




Programming	Robots	with	ROS
Morgan	Quigley,	Brian	Gerkey,	
and	William	D.	Smart





Programming	Robots	with	ROS

by	Morgan	Quigley,	Brian	Gerkey,	and	William	D.	Smart

Copyright	©	2016	Morgan	Quigley,	Brian	Gerkey,	and	William	D.	Smart.	All	rights
reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Acquisitions	Editor:	Mike	Loukides

Editors:	Meghan	Blanchette	and	Dawn	Schanafelt

Production	Editor:	Matthew	Hacker

Copyeditor:	Rachel	Head

Proofreader:	Amanda	Kersey

Indexer:	WordCo	Indexing	Services,	Inc.

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

December	2015:	First	Edition

http://safaribooksonline.com


Revision	History	for	the	First	Edition
2015-11-18	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781449323899	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Programming	Robots
with	ROS,	the	cover	image	of	a	Salim	Ali’s	fruit	bat,	and	related	trade	dress	are	trademarks
of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
authors	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-4493-2389-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781449323899




Preface

ROS,	the	Robot	Operating	System,	is	an	open	source	framework	for	getting	robots	to	do
things.	ROS	is	meant	to	serve	as	a	common	software	platform	for	people	who	are	building
and	using	robots.	This	common	platform	lets	people	share	code	and	ideas	more	readily
and,	perhaps	more	importantly,	means	that	you	do	not	have	to	spend	years	writing
software	infrastructure	before	your	robots	start	moving!

ROS	has	been	remarkably	successful.	At	the	time	of	writing,	in	the	official	distribution	of
ROS,	there	are	over	2,000	software	packages,	written	and	maintained	by	almost	600
people.	Approximately	80	commercially	available	robots	are	supported,	and	we	can	find	at
least	1,850	academic	papers	that	mention	ROS.	We	no	longer	have	to	write	everything
from	scratch,	especially	if	we’re	working	with	one	of	the	many	robots	that	support	ROS,
and	can	spend	more	time	thinking	about	robotics,	rather	than	bit-fiddling	and	device
drivers.

ROS	consists	of	a	number	of	parts:

1.	 A	set	of	drivers	that	let	you	read	data	from	sensors	and	send	commands	to	motors
and	other	actuators,	in	an	abstracted,	well-defined	format.	A	wide	variety	of	popular
hardware	is	supported,	including	a	growing	number	of	commercially	available	robot
systems.

2.	 A	large	and	growing	collection	of	fundamental	robotics	algorithms	that	allow	you	to
build	maps	of	the	world,	navigate	around	it,	represent	and	interpret	sensor	data,	plan
motions,	manipulate	objects,	and	do	a	lot	of	other	stuff.	ROS	has	become	very
popular	in	the	robotics	research	community,	and	a	lot	of	cutting-edge	algorithms	are
now	available	in	ROS.

3.	 All	of	the	computational	infrastructure	that	allows	you	to	move	data	around,	to
connect	the	various	components	of	a	complex	robot	system,	and	to	incorporate	your
own	algorithms.	ROS	is	inherently	distributed	and	allows	you	to	split	the	workload
across	multiple	computers	seamlessly.

4.	 A	large	set	of	tools	that	make	it	easy	to	visualize	the	state	of	the	robot	and	the
algorithms,	debug	faulty	behaviors,	and	record	sensor	data.	Debugging	robot
software	is	notoriously	difficult,	and	this	rich	set	of	tools	is	one	of	the	things	that
make	ROS	as	powerful	as	it	is.

5.	 Finally,	the	larger	ROS	ecosystem	includes	an	extensive	set	of	resources,	such	as	a
wiki	that	documents	many	of	the	aspects	of	the	framework,	a	question-and-answer
site	where	you	can	ask	for	help	and	share	what	you’ve	learned,	and	a	thriving
community	of	users	and	developers.



So,	why	should	you	learn	ROS?	The	short	answer	is	because	it	will	save	you	time.	ROS
provides	all	the	parts	of	a	robot	software	system	that	you	would	otherwise	have	to	write.	It
allows	you	to	focus	on	the	parts	of	the	system	that	you	care	about,	without	worrying	about
the	parts	that	you	don’t	care	about.

Why	should	you	read	this	book?	There’s	a	lot	of	material	on	the	ROS	wiki,	including
detailed	tutorials	for	many	aspects	of	the	framework.	A	thriving	user	community	is	ready
to	answer	your	questions	on	http://answers.ros.org.	Why	not	just	learn	ROS	from	these
resources?	What	we’ve	tried	to	do	in	this	book	is	to	lay	things	out	in	a	more	ordered	way
and	to	give	comprehensive	examples	of	how	you	can	use	ROS	to	do	interesting	things
with	real	and	simulated	robots.	We’ve	also	tried	to	include	tips	and	hints	about	how	to
structure	your	code,	how	to	debug	your	code	when	it	causes	the	robot	to	do	something
unexpected,	and	how	to	become	part	of	the	ROS	community.

There’s	a	fair	amount	of	complexity	in	ROS,	especially	if	you’re	not	a	seasoned
programmer;	distributed	computation,	multithreading,	event-driven	programming,	and	a
host	of	other	concepts	lie	at	the	heart	of	the	system.	If	you’re	not	already	familiar	with	at
least	some	of	these,	ROS	can	have	a	daunting	learning	curve.	This	book	is	an	attempt	to
flatten	out	that	curve	a	bit	by	introducing	you	to	the	basics	of	ROS	and	giving	you	some
practical	examples	of	how	to	use	it	for	real	applications	on	real	(and	simulated)	robots.

http://answers.ros.org


Who	Should	Read	This	Book?
If	you	want	to	make	your	robots	do	things	in	the	real	world,	but	don’t	want	to	spend	time
reinventing	the	wheel,	then	this	book	is	for	you.	ROS	includes	all	of	the	computational
infrastructure	you’ll	need	to	get	your	robots	up	and	running	and	enough	robotics
algorithms	to	get	them	doing	interesting	things	quickly.

If	you’re	interested	in	some	particular	aspect,	like	path	planning,	and	want	to	investigate	it
in	the	context	of	a	larger	robot	system,	then	this	book	is	for	you.	We’ll	show	you	how	to
get	your	robot	doing	interesting	things	using	the	infrastructure	and	algorithms	in	ROS	and
how	to	swap	out	some	of	the	existing	algorithms	for	your	own.

If	you	want	to	get	an	introduction	to	the	basic	mechanisms	of	ROS	and	an	overview	of
some	of	the	things	that	are	possible,	but	you’re	a	bit	daunted	by	the	scale	of	the
information	on	the	wiki,	then	this	book	is	for	you.	We’ll	give	you	a	tour	of	the	basic
mechanisms	and	tools	in	ROS	and	concrete	examples	of	complete	systems	that	you	can
build	on	and	adapt.



Who	Should	Not	Read	This	Book?
Although	we	don’t	want	to	exclude	anyone	from	reading	this	book,	it’s	probably	not	the
right	resource	for	everyone.	We	make	certain	implicit	assumptions	about	the	robots	that
you	will	be	using.	They	are	probably	running	Linux,	and	have	decent	computational
resources	(at	least	equivalent	to	a	laptop	computer).	They	have	sophisticated	sensors,	such
as	a	Microsoft	Kinect.	They	are	ground-based,	and	probably	can	move	about	the	world.	If
your	robots	don’t	fall	into	at	least	some	of	these	categories,	the	examples	in	this	book
might	not	be	immediately	relevant	to	you,	although	the	material	on	the	underlying
mechanisms	and	tools	should	be.

This	book	is	primarily	about	ROS,	and	not	about	robotics.	While	you	will	learn	a	bit	about
robotics	here,	we	don’t	go	into	great	depth	about	many	of	the	algorithms	in	ROS.	If	you’re
looking	for	a	broad	introduction	to	robotics,	then	this	book	isn’t	the	one	you’re	looking
for.



What	You’ll	Learn
This	book	is	meant	to	be	a	broad	introduction	to	programming	robots	with	ROS.	We’ll
cover	the	important	aspects	of	the	basic	mechanisms	and	tools	that	make	up	the	core	of
ROS	and	show	you	how	to	use	them	to	create	software	to	control	your	robots.	We’ll	show
you	concrete	examples	of	how	you	can	use	ROS	to	do	some	interesting	things	with	your
robots	and	give	you	advice	on	how	to	build	on	these	examples	to	create	your	own	systems.

In	addition	to	the	technical	material,	we’ll	also	show	you	how	to	navigate	the	larger	ROS
ecosystem,	such	as	the	wiki	and	the	Q&A	forum,	and	how	to	become	a	part	of	the	global
ROS	community,	sharing	your	code	and	newly	found	knowledge	with	other	roboticists
across	the	world.



Prerequisites
There	are	a	few	things	that	you	need	to	know	before	you	can	really	use	the	material	in	this
book.	Since	ROS	is	a	software	framework,	you	really	need	to	know	how	to	program	to
properly	understand	it.	Although	it’s	possible	to	program	in	ROS	in	a	variety	of	languages,
in	this	book	we’re	going	to	be	using	Python.	If	you	don’t	know	Python,	then	a	lot	of	the
code	here	isn’t	going	to	make	much	sense.	Fortunately,	Python	is	an	easy	language	to
learn!	There	are	many	excellent	reference	books	and	free	websites	available	for	learning
Python,	starting	with	the	official	Python	website:	http://python.org.

ROS	works	best	in	an	Ubuntu	Linux	environment,	and	having	some	previous	exposure	to
Linux	will	make	your	life	a	lot	easier.	We’ll	try	to	introduce	the	important	parts	of	Linux
as	we	go,	but	having	a	basic	understanding	of	the	filesystem,	the	bash	command	shell,	and
at	least	one	text	editor	will	help	you	concentrate	on	the	ROS-specific	material.

A	basic	understanding	of	robotics,	while	not	strictly	necessary	to	learn	ROS,	will	also	be
helpful.	Knowing	something	about	the	underlying	mathematics	used	by	robotics,	such	as
coordinate	transforms	and	kinematic	chains,	will	be	useful	for	understanding	some	of	the
ROS	mechanisms	that	we	talk	about.	Again,	we’ll	try	to	give	a	brief	introduction	to	some
of	this	material,	but	if	you’re	not	familiar	with	it,	you	might	want	to	take	a	side	track	and
dig	into	the	robotics	literature	to	fill	in	some	background.

http://python.org


Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	directory	and	pathnames,	filenames,	and
file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	namespaces,	data	types,	environment	variables,
statements,	and	keywords.	Also	used	for	commands,	command-line	utilities,	and
ROS	packages,	nodes,	topics,	etc.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

NOTE
This	icon	indicates	a	general	note.

TIP
This	icon	signifies	a	tip	or	suggestion.

WARNING
This	icon	indicates	a	warning	or	caution.



Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download:
https://github.com/osrf/rosbook.

This	book	is	here	to	help	you	get	your	job	done.	To	that	end,	the	examples	in	the	above-
linked	repository	are	available	under	the	Apache	2.0	License,	which	permits	very	broad
reuse	of	the	code.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Programming	Robots	with	ROS	by	Morgan
Quigley,	Brian	Gerkey,	and	William	D.	Smart	(O’Reilly).	Copyright	2015	Morgan
Quigley,	Brian	Gerkey,	and	William	D.	Smart,	978-1-4493-2389-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/osrf/rosbook
mailto:permissions@oreilly.com


Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com


How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/prog_robots_w_ros.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/prog_robots_w_ros
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments
First	and	foremost,	we	would	like	to	thank	our	editors	at	O’Reilly,	Mike	Loukides,	Meg
Blanchette,	and	Dawn	Schanafelt,	all	of	whom	showed	great	patience	and	uncommon
restraint	with	us	as	we	put	this	book	together.	We’d	also	like	to	thank	everyone	who	gave
us	feedback	on	early	drafts	of	the	book,	especially	Andreas	Bihlmaier,	Jon	Bohren,	Zach
Dodds,	and	Kat	Scott.	Their	comments	and	suggestions	made	this	a	much	better	book.

Thanks,	also,	to	everyone	who’s	helped	us	figure	out	how	to	make	ROS	do	the	right	thing
on	our	robots.	Mike	Ferguson	helped	with	the	Fetch	examples.	Steve	Peters,	Nate	Koenig,
and	John	Hsu	from	the	Open	Source	Robotics	Foundation	(OSRF)	answered	some	gnarly
Gazebo	simulation	questions.	William	Woodall	and	Tully	Foote	(both	from	the	OSRF)
fielded	a	number	of	general	ROS	hacking	questions.

Thanks	as	well	to	Dylan	Jones,	who	caught	a	code	bug	at	the	last	minute	before	the	book
went	to	press.

Finally,	we’d	like	to	thank	all	of	the	authors,	maintainers,	and	users	in	the	worldwide	ROS
community.	If	it	wasn’t	for	them,	ROS	would	not	be	what	it	is	today,	and	we	would	not	be
writing	this	preface.



Part	I.	Fundamentals





Chapter	1.	Introduction

The	Robot	Operating	System	(ROS)	is	a	framework	for	writing	robot	software.	It	is	a
collection	of	tools,	libraries,	and	conventions	that	aim	to	simplify	the	task	of	creating
complex	and	robust	robot	behavior	across	a	wide	variety	of	robotic	platforms.

Why?	Because	creating	truly	robust,	general-purpose	robot	software	is	hard.	From	the
robot’s	perspective,	many	problems	that	seem	trivial	to	humans	can	actually	encompass
wild	variations	between	instances	of	tasks	and	environments.

Consider	a	simple	“fetch	an	item”	task,	where	an	office-assistant	robot	is	instructed	to
retrieve	a	stapler.	First,	the	robot	must	understand	the	request,	either	verbally	or	through
some	other	modality,	such	as	a	web	interface,	email,	or	even	SMS.	Then,	the	robot	must
start	some	sort	of	planner	to	coordinate	the	search	for	the	item,	which	will	likely	require
navigating	through	various	rooms	in	a	building,	perhaps	including	elevators	and	doors.
Once	arriving	in	a	room,	the	robot	must	search	desks	cluttered	with	similarly	sized	objects
(since	all	handheld	objects	are	roughly	the	same	size)	and	find	a	stapler.	The	robot	must
then	retrace	its	steps	and	deliver	the	stapler	to	the	desired	location.	Each	of	those
subproblems	can	have	arbitrary	numbers	of	complicating	factors.	And	this	was	a	relatively
simple	task!

Dealing	with	real-world	variations	in	complex	tasks	and	environments	is	so	difficult	that
no	single	individual,	laboratory,	or	institution	can	hope	to	build	a	complete	system	from
scratch.	As	a	result,	ROS	was	built	from	the	ground	up	to	encourage	collaborative
robotics	software	development.	For	example,	in	the	“fetch	a	stapler”	problem,	one
organization	might	have	experts	in	mapping	indoor	environments	and	could	contribute	a
complex	yet	easy-to-use	system	for	producing	indoor	maps.	Another	group	might	have
expertise	in	using	maps	to	robustly	navigate	indoor	environments.	Yet	another	group
might	have	discovered	a	particular	computer	vision	approach	that	works	well	for
recognizing	small	objects	in	clutter.	ROS	includes	many	features	specifically	designed	to
simplify	this	type	of	large-scale	collaboration.



Brief	History
ROS	is	a	large	project	that	has	many	ancestors	and	contributors.	The	need	for	an	open
collaboration	framework	was	felt	by	many	people	in	the	robotics	research	community.
Various	projects	at	Stanford	University	in	the	mid-2000s	involving	integrative,	embodied
AI,	such	as	the	STanford	AI	Robot	(STAIR)	and	the	Personal	Robots	(PR)	program,
created	in-house	prototypes	of	the	types	of	flexible,	dynamic	software	systems	described
in	this	book.	In	2007,	Willow	Garage,	Inc.,	a	nearby	robotics	incubator,	provided
significant	resources	to	extend	these	concepts	much	further	and	create	well-tested
implementations.	The	effort	was	boosted	by	countless	researchers	who	contributed	their
time	and	expertise	to	the	core	of	ROS	and	its	fundamental	software	packages.	Throughout,
the	software	was	developed	in	the	open	using	the	permissive	BSD	open	source	license,
and	it	gradually	became	widely	used	in	the	robotics	research	community.

From	the	start,	ROS	was	being	developed	at	multiple	institutions	and	for	multiple	robots.
At	first,	this	seemed	like	a	headache,	since	it	would	have	been	far	simpler	for	all
contributors	to	place	their	code	on	the	same	servers.	Ironically,	over	the	years,	this	has
emerged	as	one	of	the	great	strengths	of	the	ROS	ecosystem:	any	group	can	start	their	own
ROS	code	repository	on	their	own	servers,	and	they	will	maintain	full	ownership	and
control	of	it.	They	don’t	need	anyone’s	permission.	If	they	choose	to	make	their	repository
publicly	visible,	they	can	receive	the	recognition	and	credit	they	deserve	for	their
achievements	and	benefit	from	specific	technical	feedback	and	improvements	like	all	open
source	software	projects.

The	ROS	ecosystem	now	consists	of	tens	of	thousands	of	users	worldwide,	working	in
domains	ranging	from	tabletop	hobby	projects	to	large	industrial	automation	systems.



Philosophy
All	software	frameworks	impose	their	development	philosophies	on	their	contributors
directly	or	indirectly,	through	their	idioms	and	common	practices.	Broadly	speaking,	ROS
follows	the	Unix	philosophy	of	software	development	in	several	key	aspects.	This	tends	to
make	ROS	feel	“natural”	for	developers	coming	from	a	Unix	background	but	somewhat
“cryptic”	at	first	for	those	who	have	primarily	used	graphical	development	environments
on	Windows	or	Mac	OS	X.	The	following	paragraphs	describe	several	philosophical
aspects	of	ROS:

Peer	to	peer

ROS	systems	consist	of	numerous	small	computer	programs	that	connect	to	one
another	and	continuously	exchange	messages.	These	messages	travel	directly	from
one	program	to	another;	there	is	no	central	routing	service.	Although	this	makes	the
underlying	“plumbing”	more	complex,	the	result	is	a	system	that	scales	better	as	the
amount	of	data	increases.

Tools-based

As	demonstrated	by	the	enduring	architecture	of	Unix,	complex	software	systems	can
be	created	from	many	small,	generic	programs.	Unlike	many	other	robotics	software
frameworks,	ROS	does	not	have	a	canonical	integrated	development	and	runtime
environment.	Tasks	such	as	navigating	the	source	code	tree,	visualizing	the	system
interconnections,	graphically	plotting	data	streams,	generating	documentation,
logging	data,	etc.	are	all	performed	by	separate	programs.	This	encourages	the
creation	of	new,	improved	implementations,	since	(ideally)	they	can	be	exchanged	for
implementations	better	suited	for	a	particular	task	domain.	Recent	versions	of	ROS
allow	many	of	these	tools	to	be	composed	into	single	processes	for	efficiency	or	to
create	coherent	interfaces	for	operators	or	debugging,	but	the	principle	remains	the
same:	the	individual	tools	themselves	are	relatively	small	and	generic.

Multilingual



Many	software	tasks	are	easier	to	accomplish	in	“high-productivity”	scripting
languages	such	as	Python	or	Ruby.	However,	there	are	times	when	performance
requirements	dictate	the	use	of	faster	languages,	such	as	C++.	There	are	also	various
reasons	that	some	programmers	prefer	languages	such	as	Lisp	or	MATLAB.	Endless
email	flame	wars	have	been	waged,	are	currently	being	waged,	and	will	doubtless
continue	to	be	waged	over	which	language	is	best	suited	for	a	particular	task.
Acknowledging	that	all	of	these	opinions	have	merit,	that	languages	have	different
utilities	in	different	contexts,	and	that	each	programmer’s	unique	background	is
hugely	important	when	choosing	a	language,	ROS	chose	a	multilingual	approach.
ROS	software	modules	can	be	written	in	any	language	for	which	a	client	library	has
been	written.	At	the	time	of	writing,	client	libraries	exist	for	C++,	Python,	LISP,	Java,
JavaScript,	MATLAB,	Ruby,	Haskell,	R,	Julia,	and	others.	ROS	client	libraries
communicate	with	one	another	by	following	a	convention	that	describes	how
messages	are	“flattened”	or	“serialized”	before	being	transmitted	over	the	network.
This	book	will	use	the	Python	client	library	almost	exclusively,	to	save	space	in	the
code	examples	and	for	its	general	ease	of	use.	However,	the	tasks	described	in	this
book	can	be	accomplished	with	any	of	the	client	libraries.

Thin

The	ROS	conventions	encourage	contributors	to	create	standalone	libraries	and	then
wrap	those	libraries	so	they	can	send	and	receive	messages	to	and	from	other	ROS
modules.	This	extra	layer	is	intended	to	allow	the	reuse	of	software	outside	of	ROS
for	other	applications,	and	it	greatly	simplifies	the	creation	of	automated	tests	using
standard	continuous	integration	tools.

Free	and	open	source

The	core	of	ROS	is	released	under	the	permissive	BSD	license,	which	allows
commercial	and	noncommercial	use.	ROS	passes	data	between	modules	using
interprocess	communication	(IPC),	which	means	that	systems	built	using	ROS	can
have	fine-grained	licensing	of	their	various	components.	Commercial	systems,	for
example,	often	have	several	closed	source	modules	communicating	with	a	large
number	of	open	source	modules.	Academic	and	hobby	projects	are	often	fully	open
source.	Commercial	product	development	is	often	done	completely	behind	a	firewall.
All	of	these	use	cases,	and	more,	are	common	and	perfectly	valid	under	the	ROS
license.



Installation
Although	ROS	has	been	made	to	work	on	a	wide	variety	of	systems,	in	this	book	we	will
be	using	Ubuntu	Linux,	a	popular	and	relatively	user-friendly	Linux	distribution.	Ubuntu
provides	an	easy-to-use	installer	that	allows	computers	to	dual-boot	between	the	operating
system	they	were	shipped	with	(typically	Windows	or	Mac	OS	X)	and	Ubuntu	itself.	That
being	said,	it	is	important	to	back	up	your	computer	before	installing	Ubuntu,	in	case
something	unexpected	happens	and	the	drive	is	completely	erased	in	the	process.

Although	there	are	virtualization	environments	such	as	VirtualBox	and	VMware	that	allow
Linux	to	run	concurrently	with	a	host	operating	system	such	as	Windows	or	Mac	OS	X,
the	simulator	used	in	this	book	is	rather	compute-	and	graphics-intensive,	and	might	be
overly	sluggish	in	a	virtualized	environment.	As	such,	we	recommend	running	Ubuntu
Linux	natively	by	following	the	instructions	on	the	Ubuntu	website.

Ubuntu	Linux	can	be	downloaded	freely	from	http://ubuntu.com.	The	remainder	of	this
book	assumes	that	ROS	is	being	run	on	Ubuntu	14.04	LTS,	also	known	as	Ubuntu	Trusty
Tahr,	and	will	use	the	ROS	Indigo	distribution.

The	ROS	installation	steps	require	a	few	shell	commands	that	involve	some	careful
typing.	These	can	be	either	hand-copied	from	the	following	block	(note	that	the	first
command	has	been	broken	across	lines	to	fit	the	page	margins;	you	can	enter	this	on	a
single	line,	without	the	backslashes),	or	copied	and	pasted	from	the	ROS	wiki.	The
following	commands	will	add	ros.org	to	the	system’s	list	of	software	sources,	download
and	install	the	ROS	packages,	and	set	up	the	environment	and	ROS	build	tools:

user@hostname$	sudo	sh	-c	\

		'echo	"deb	http://packages.ros.org/ros/ubuntu	trusty	main"	>	\

		/etc/apt/sources.list.d/ros-latest.list'

user@hostname$	wget	http://packages.ros.org/ros.key	-O	-	|	sudo	apt-key	add	-

user@hostname$	sudo	apt-get	update

user@hostname$	sudo	apt-get	install	ros-indigo-desktop-full	python-rosinstall

user@hostname$	sudo	rosdep	init

user@hostname$	rosdep	update

user@hostname$	echo	"source	/opt/ros/indigo/setup.bash"	>>	~/.bashrc

user@hostname$	source	~/.bashrc

That	seems	like	a	gnarly	block	of	shell	commands!	Some	of	them	are	indeed	a	bit	unusual,
but	others	will	be	commonly	used	when	using	ROS	and	other	large	software	packages	on
Ubuntu	systems.	In	particular,	the	apt-get	command	is	a	commonly	used	command	on
Ubuntu	Linux	distributions	(among	others),	and	it	will	be	used	frequently	throughout	the
book	to	install	additional	software	packages.	This	command	will	install	the	desired
software	package(s)	requested	on	the	command	line,	as	well	as	their	dependencies,	and
their	dependencies’	dependencies,	and	so	on.	If	you’d	rather	use	a	graphical	application	to
install	and	manage	your	Ubuntu	package	files,	you	can	install	synaptic.	Of	course,	you
might	have	to	do	this	on	the	command	line:

user@hostname$	sudo	apt-get	install	synaptic

http://ubuntu.com
http://wiki.ros.org/indigo/Installation/Ubuntu


The	last	two	lines	of	the	installation	sequence	add	the	ROS	environment	setup	script,
setup.bash,	to	the	current	and	future	shells	on	this	system.	This	means	that	commands	and
shell	scripts	provided	by	ROS,	such	as	the	many	command-line	tools	described	in	future
chapters,	are	now	accessible	to	the	shell	interpreters	on	this	system.	Without	those	two
lines,	users	would	have	to	manually	source	the	/opt/ros/indigo/setup.bash	file	for	each
command	shell	they	opened.	Adding	the	ROS	setup.bash	file	to	the	user’s	~/.bashrc
ensures	that	this	step	happens	automatically	for	all	future	command	shells.

Throughout	the	book,	we	will	refer	to	various	operating	system	features	as	“POSIX,”	such
as	“POSIX	processes,”	“POSIX	environment	variables,”	and	so	on.	This	is	meant	to
indicate	that	much	of	ROS	is	written	with	portability	in	mind	between	POSIX-compliant
systems,	such	as	Linux	or	Mac	OS	X.	That	being	said,	in	this	book	we	will	be	focusing
specifically	on	Ubuntu	Linux,	since	it	is	a	popular	Linux	distribution	for	the	desktop	and
since	the	ROS	build	farm	produces	easy-to-install	binaries	for	Ubuntu.



Summary
This	chapter	has	provided	a	high-level	overview	of	ROS	and	its	guiding	philosophical
ideas.	ROS	is	a	framework	for	developing	robotics	software.	The	software	is	structured	as
a	large	number	of	small	programs	that	rapidly	pass	messages	to	one	another.	This
paradigm	was	chosen	to	encourage	the	reuse	of	robotics	software	outside	the	particular
robot	and	environment	that	drove	its	creation.	Indeed,	this	loosely	coupled	structure
allows	for	the	creation	of	generic	modules	that	are	applicable	to	broad	classes	of	robot
hardware	and	software	pipelines,	facilitating	code	sharing	and	reuse	among	the	global
robotics	community.





Chapter	2.	Preliminaries

Before	we	start	writing	code	in	ROS,	we’re	going	to	take	a	moment	to	introduce	some	of
the	key	concepts	that	underlie	the	framework.	ROS	systems	are	comprised	of	a	large
number	of	independent	programs	that	are	constantly	communicating	with	each	other.	In
this	chapter,	we’ll	discuss	this	architecture	and	look	at	the	command-line	tools	that	interact
with	it.	We’ll	also	discuss	the	details	of	the	naming	schemes	and	namespaces	used	by
ROS,	and	how	these	can	be	employed	to	promote	reuse	of	your	code.



The	ROS	Graph
One	of	the	original	“challenge	problems”	that	motivated	the	design	of	ROS	was	fondly
referred	to	as	the	“fetch	an	item”	problem.	Imagine	a	relatively	large	and	complex	robot
with	several	cameras	and	laser	scanners,	a	manipulator	arm,	and	a	wheeled	base.	In	the
“fetch	an	item”	problem,	the	robot’s	task	is	to	navigate	a	typical	home	or	office
environment,	find	the	requested	item,	and	deliver	it	to	the	requested	location.	This	task,
like	many	robotics	tasks,	led	to	several	observations	about	many	robotics	software
applications,	which	became	some	of	the	design	goals	of	ROS:

The	application	task	can	be	decomposed	into	many	independent	subsystems,	such	as
navigation,	computer	vision,	grasping,	and	so	on.

These	subsystems	can	be	used	for	other	tasks,	such	as	doing	security	patrols,	cleaning,
delivering	mail,	and	so	on.

With	proper	hardware	and	geometry	abstraction	layers,	the	vast	majority	of	the
application	software	can	run	on	any	robot.

These	goals	can	be	illustrated	by	the	fundamental	rendering	of	a	ROS	system:	its	graph.	A
ROS	system	is	made	up	of	many	different	programs	running	simultaneously	and
communicating	with	one	another	by	passing	messages.	It	is	convenient	to	use	a
mathematical	graph	to	represent	this	collection	of	programs	and	messages:	the	programs
are	the	graph	nodes,	and	programs	that	communicate	with	one	another	are	connected	by
edges.	A	sample	ROS	graph	appears	in	Figure	2-1,	which	represents	one	of	the	earliest
implementations	of	the	“fetch	an	item”	application	using	ROS.	The	details	of	this	graph
are	not	particularly	important;	it	is	just	provided	to	illustrate	the	general	concept	of	a	ROS
system	as	a	collection	of	nodes	passing	messages	to	one	another.	We	can	represent	any
ROS	system,	large	or	small,	in	this	way.	In	fact,	this	representation	is	so	useful	for
software	development	that	we	actually	refer	to	ROS	programs	as	nodes,	to	help	us
remember	that	each	program	is	just	one	piece	of	a	much	larger	system.



Figure	2-1.	ROS	graph	of	a	fetch-an-item	robot	—	nodes	in	the	graph	represent	individual	programs;	edges	represent
message	streams	communicating	sensor	data,	actuator	commands,	planner	states,	intermediate	representations,	and	so

on

To	reiterate:	a	ROS	graph	node	represents	a	software	module	that	is	sending	or	receiving
messages,	and	a	ROS	graph	edge	represents	a	stream	of	messages	between	two	nodes.
Although	things	can	get	more	complex,	typically	nodes	are	POSIX	processes,	and	edges
are	TCP	connections.	This	offers	additional	fault	tolerance:	a	software	crash	will	typically
only	take	down	its	own	process.	The	rest	of	the	graph	will	stay	up,	passing	messages	and
functioning	as	normal.	The	circumstances	leading	up	to	the	crash	can	often	be	recreated	by
logging	the	messages	entering	a	node	and	simply	playing	them	back	at	a	later	time	inside	a
debugger.

However,	perhaps	the	greatest	benefit	of	a	loosely	coupled,	graph-based	architecture	is	the
ability	to	rapid-prototype	complex	systems	with	little	or	no	software	“glue”	required	for
experimentation.	Single	nodes,	such	as	the	object	recognition	node	in	a	“fetch	an	item”
system,	can	be	trivially	swapped	by	simply	launching	an	entirely	different	process	that
accepts	images	and	outputs	labeled	objects.	Not	only	can	a	single	node	be	swapped,	but
entire	chunks	of	the	graph	(subgraphs)	can	be	torn	down	and	replaced,	at	runtime,	with
other	subgraphs.	Real-robot	hardware	drivers	can	be	replaced	with	simulators,	navigation
subsystems	can	be	swapped,	algorithms	can	be	tweaked	and	recompiled,	and	so	on.	Since



ROS	is	creating	all	of	the	required	network	backend	on	the	fly,	the	entire	system	is
interactive	and	designed	to	encourage	experimentation.

Up	to	this	point,	we	have	assumed	that	nodes	somehow	find	each	other	but	have	not
described	how	that	process	works.	Among	all	the	traffic	flying	around	a	busy	network,
how	do	nodes	find	one	another,	so	they	can	start	passing	messages?	The	answer	lies	in	a
program	called	roscore.



roscore
roscore	is	a	service	that	provides	connection	information	to	nodes	so	that	they	can
transmit	messages	to	one	another.	Every	node	connects	to	roscore	at	startup	to	register
details	of	the	message	streams	it	publishes	and	the	streams	to	which	it	wishes	to	subscribe.
When	a	new	node	appears,	roscore	provides	it	with	the	information	that	it	needs	to	form	a
direct	peer-to-peer	connection	with	other	nodes	publishing	and	subscribing	to	the	same
message	topics.	Every	ROS	system	needs	a	running	roscore,	since	without	it,	nodes
cannot	find	other	nodes.

However,	a	key	aspect	of	ROS	is	that	the	messages	between	nodes	are	transmitted	peer-to-
peer.	The	roscore	is	only	used	by	nodes	to	know	where	to	find	their	peers.	This	is	a	bit
subtle,	and	can	lead	to	some	misunderstandings,	as	programmers	coming	from	web-based
backgrounds	are	often	familiar	with	client/server	systems,	such	as	web-browsers	talking	to
web	servers,	where	the	roles	of	clients	and	servers	are	clearly	defined.	The	ROS
architecture	is	a	hybrid	between	a	classical	client/server	system	and	a	fully	distributed	one,
due	to	the	presence	of	a	central	roscore	that	provides	a	name	service	for	the	peer-to-peer
message	streams.

When	a	ROS	node	starts	up,	it	expects	its	process	to	have	an	environment	variable	named
ROS_MASTER_URI.	This	variable	is	expected	to	contain	a	string	of	the	form
http://hostname:11311/,	which	in	this	case	would	imply	that	there	is	a	running	instance
of	roscore	accessible	on	port	11311	somewhere	on	a	host	called	hostname	that	can	be
accessed	over	the	network.

NOTE
Port	11311	was	chosen	as	the	default	port	for	roscore	because	it	was	a	palindromic	prime	that	was	not
being	used	by	other	popular	applications	in	the	early	days	of	ROS,	circa	2007.	It	has	no	particular
significance.	Any	user	space	port	number	(1025–65535)	can	be	used	instead.	Different	ports	can	be
specified	in	the	roscore	startup	command	and	in	the	ROS_MASTER_URI	environment	variable	to	allow
multiple	ROS	systems	to	coexist	on	a	single	network.

With	knowledge	of	the	location	of	roscore	on	the	network,	nodes	register	themselves	at
startup	with	roscore	and	then	query	roscore	to	find	other	nodes	and	data	streams	by
name.	Each	ROS	node	tells	roscore	which	messages	it	provides	and	which	it	would	like
to	subscribe	to.	roscore	then	provides	the	addresses	of	the	relevant	message	producers
and	consumers.	Viewed	in	a	graph	form,	every	node	in	the	graph	can	periodically	call	on
services	provided	by	roscore	to	find	its	peers.	This	is	represented	by	the	dashed	lines
shown	in	Figure	2-2,	which	show	that	in	this	minimalist	two-node	system,	the	talker	and
listener	nodes	can	periodically	make	calls	to	roscore	while	exchanging	peer-to-peer
messages	directly	themselves.



Figure	2-2.	roscore	connects	only	ephemerally	to	the	other	nodes	in	the	system

roscore	also	provides	a	parameter	server,	which	is	used	extensively	by	ROS	nodes	for
configuration.	The	parameter	server	allows	nodes	to	store	and	retrieve	arbitrary	data
structures,	such	as	descriptions	of	robots,	parameters	for	algorithms,	and	so	on.	As	with
everything	in	ROS,	there	is	a	simple	command-line	tool	to	interact	with	the	parameter
server:	rosparam,	which	will	be	used	throughout	the	book.

We’ll	see	examples	of	how	to	use	roscore	soon.	For	now,	all	you	really	need	to	remember
is	that	roscore	is	a	program	that	allows	nodes	to	find	other	nodes.	The	last	thing	you	need
to	know	about	before	we	start	running	some	nodes	is	how	ROS	organizes	packages	and	a
little	bit	about	how	the	ROS	build	system,	known	as	catkin,	works.



catkin,	Workspaces,	and	ROS	Packages
catkin	is	the	ROS	build	system:	the	set	of	tools	that	ROS	uses	to	generate	executable
programs,	libraries,	scripts,	and	interfaces	that	other	code	can	use.	If	you	use	C++	to	write
your	ROS	code,	you	need	to	know	a	fair	bit	about	catkin.	Since	we’re	going	to	be	using
Python	for	the	examples	in	this	book,	we	can	get	away	without	delving	into	all	the	details.
We	will,	however,	have	to	interact	with	it	a	bit,	so	we’ll	spend	some	time	now	talking
about	how	it	works.	If	you’re	interested	in	learning	more,	the	catkin	wiki	page	is	a	good
place	to	start.	If	you	want	to	know	why	ROS	has	its	own	build	system	in	the	first	place,
there’s	a	good	discussion	on	the	catkin	conceptual	overview	wiki	page.

http://wiki.ros.org/catkin?distro=indigo
http://wiki.ros.org/catkin/conceptual_overview?distro=indigo


catkin
catkin	comprises	a	set	of	CMake	macros	and	custom	Python	scripts	to	provide	extra
functionality	on	top	of	the	normal	CMake	workflow.	CMake	is	a	commonly	used	open
source	build	system.	If	you’re	going	to	master	the	subtleties	of	catkin,	it	really	helps	if
you	know	a	bit	about	CMake.	However,	for	the	more	casual	catkin	user,	all	you	really	need
to	know	is	that	there	are	two	files,	CMakeLists.txt	and	package.xml,	that	you	need	to	add
some	specific	information	to	in	order	to	have	things	work	properly.	You	then	call	the
various	catkin	tools	to	generate	the	directories	and	files	you’re	going	to	need	as	you	write
code	for	your	robots.	These	tools	will	be	introduced	as	we	need	them	throughout	the	book.
Before	we	get	to	any	of	this,	though,	we	need	to	introduce	you	to	workspaces.



Workspaces
Before	you	start	writing	any	ROS	code,	you	need	to	set	up	a	workspace	for	this	code	to
live	in.	A	workspace	is	simply	a	set	of	directories	in	which	a	related	set	of	ROS	code	lives.
You	can	have	multiple	ROS	workspaces,	but	you	can	only	work	in	one	of	them	at	any	one
time.	The	simple	way	to	think	about	this	is	that	you	can	only	see	code	that	lives	in	your
current	workspace.

Start	by	making	sure	that	you’ve	added	the	system-wide	ROS	setup	script	to	your	.bashrc
file,	as	described	in	“Installation”.	If	you	haven’t	done	that	already,	do	it	now,	or	source
the	file	by	hand:

user@hostname$	source	/opt/ros/indigo/setup.bash

Now,	we’re	going	to	make	a	catkin	workspace	and	initialize	it:

user@hostname$	mkdir	-p	~/catkin_ws/src

user@hostname$	cd	~/catkin_ws/src

user@hostname$	catkin_init_workspace

This	creates	a	workspace	directory	called	catkin_ws	(although	you	can	call	it	anything	you
like),	with	a	src	directory	inside	it	for	your	code.	The	catkin_init_workspace	command
creates	a	CMakeLists.txt	file	for	you	in	the	src	directory,	where	you	invoked	it.1	Next,
we’re	going	to	create	some	other	workspace	files:

user@hostname$	cd	~/catkin_ws

user@hostname$	catkin_make

Running	catkin_make	will	generate	a	lot	of	output	as	it	does	its	work.	When	it’s	done,
you’ll	end	up	with	two	new	directories:	build	and	devel.	build	is	where	catkin	is	going	to
store	the	results	of	some	of	its	work,	like	libraries	and	executable	programs	if	you	use
C++.	We’ll	largely	ignore	build	since	we	don’t	need	it	much	when	using	Python.	devel
contains	a	number	of	files	and	directories,	the	most	interesting	of	which	are	the	setup	files.
Running	these	configures	your	system	to	use	this	workspace,	and	the	code	that’s	(going	to
be)	contained	inside	it.	Assuming	you’re	using	the	default	command-line	shell	(bash)	and
are	still	in	the	top-level	directory	of	your	workspace,	you	can	do	this	with:

user@hostname$	source	devel/setup.bash

Congratulations!	You’ve	just	created	your	first	ROS	workspace.	You	should	put	all	the
code	for	this	book,	and	any	additional	code	you	write	that’s	based	on	it,	into	this
workspace,	in	the	src	directory,	organized	as	ROS	packages.



WARNING
If	you	open	a	new	shell	(or	Linux	terminal),	you	have	to	source	the	setup.bash	file	for	the	workspace	you
want	to	work	with.	If	you	don’t	do	this,	then	the	shell	won’t	know	where	to	find	your	code.	This	can	be
annoying,	since	it’s	an	easy	thing	to	forget.	One	way	to	get	around	this	if	you	only	have	one	workspace	is	to
add	the	source	~/catkin_ws/devel/setup.bash	command	to	your	.bashrc	file	(with	the	appropriate
filename,	of	course).	This	will	automatically	set	up	your	workspace	for	you	when	you	open	a	new	shell.



ROS	Packages
ROS	software	is	organized	into	packages,	each	of	which	contains	some	combination	of
code,	data,	and	documentation.2	The	ROS	ecosystem	includes	thousands	of	publicly
available	packages	in	open	repositories,	and	many	thousands	more	packages	are	certainly
lurking	behind	organizational	firewalls.

Packages	sit	inside	workspaces,	in	the	src	directory.	Each	package	directory	must	include	a
CMakeLists.txt	file	and	a	package.xml	file	that	describes	the	contents	of	the	package	and
how	catkin	should	interact	with	it.	Creating	a	new	package	is	easy:

user@hostname$	cd	~/catkin_ws/src

user@hostname$	catkin_create_pkg	my_awesome_code	rospy

This	changes	the	directory	to	src	(where	packages	live)	and	invokes	catkin_create_pkg
to	make	the	new	package	called	my_awesome_code,	which	depends	on	the	(already
existing)	rospy	package.	If	your	new	package	depends	on	other	existing	packages,	you
can	also	list	them	on	the	command	line.	We’ll	talk	about	package	dependencies	later	in	the
book,	so	don’t	worry	if	that	bit	doesn’t	make	a	lot	of	sense	to	you	just	yet.

The	catkin_create_pkg	command	makes	a	directory	with	the	same	name	as	the	new
package	(my_awesome_code)	with	a	CMakeLists.txt	file,	a	package.xml	file,	and	a	src
directory	in	it.	The	package.xml	file	contains	a	bunch	of	metadata	about	your	new
package,	as	shown	in	Example	2-1.

Example	2-1.	An	example	empty	package	file
<?xml	version="1.0"?>

<package>

		<name>my_awesome_code</name>	

		<version>0.0.0</version>	

		<description>The	my_awesome_code	package</description>		

		<!--	One	maintainer	tag	required,	multiple	allowed,	one	person	per	tag	-->

		<!--	Example:		-->

		<!--	<maintainer	email="jane.doe@example.com">Jane	Doe</maintainer>	-->

		<maintainer	email="user@todo.todo">user</maintainer>		

		<!--	One	license	tag	required,	multiple	allowed,	one	license	per	tag	-->

		<!--	Commonly	used	license	strings:	-->

		<!--			BSD,	MIT,	Boost	Software	License,	GPLv2,	GPLv3,	LGPLv2.1,	LGPLv3	-->

		<license>TODO</license>		

		<!--	Url	tags	are	optional,	but	multiple	are	allowed,	one	per	tag	-->

		<!--	Optional	attribute	type	can	be:	website,	bugtracker,	or	repository	-->

		<!--	Example:	-->

		<!--	<url	type="website">http://wiki.ros.org/my_awesome_code</url>	-->				

		<!--	Author	tags	are	optional,	multiple	are	allowed,	one	per	tag	-->

		<!--	Authors	do	not	have	to	be	maintainers,	but	could	be	-->

		<!--	Example:	-->

		<!--	<author	email="jane.doe@example.com">Jane	Doe</author>	-->				

		<!--	The	*_depend	tags	are	used	to	specify	dependencies	-->

		<!--	Dependencies	can	be	catkin	packages	or	system	dependencies	-->

		<!--	Examples:	-->



		<!--	Use	build_depend	for	packages	you	need	at	compile	time:	-->

		<!--			<build_depend>message_generation</build_depend>	-->

		<!--	Use	buildtool_depend	for	build	tool	packages:	-->

		<!--			<buildtool_depend>catkin</buildtool_depend>	-->

		<!--	Use	run_depend	for	packages	you	need	at	runtime:	-->

		<!--			<run_depend>message_runtime</run_depend>	-->

		<!--	Use	test_depend	for	packages	you	need	only	for	testing:	-->

		<!--			<test_depend>gtest</test_depend>	-->

		<buildtool_depend>catkin</buildtool_depend>				

		<build_depend>rospy</build_depend>

		<run_depend>rospy</run_depend>

		<!--	The	export	tag	contains	other,	unspecified,	tags	-->

		<export>				

				<!--	Other	tools	can	request	additional	information	be	placed	here	-->

		</export>

</package>

The	name	of	your	package.	You	shouldn’t	change	this.

The	version	number.

A	short	description	of	what’s	in	the	package	and	what	it’s	for.

Who’s	responsible	for	maintaining	the	package	and	fixing	bugs?

What	license	are	you	releasing	the	code	under?

A	URL,	often	pointing	at	the	ROS	wiki	page	for	the	package.

Who	wrote	the	package?	One	set	of	tags	per	author.

What	dependencies	does	the	package	have?	We’ll	cover	this	later.

This	is	for	information	used	by	other	tools	external	to	catkin.

We’re	going	to	ignore	the	CMakeLists.txt	file	for	now,	since	we’ll	return	to	it	later.	You
can	take	a	look	at	it	if	you	like,	but	unless	you	are	already	familiar	with	CMake	it	might	not
make	a	lot	of	sense	to	you.

Once	you	have	a	created	package,	you	can	put	your	Python	nodes	in	the	src	directory.
Other	files	go	in	directories	under	the	package	directory,	too.	For	instance,	launch	files,
which	we’ll	talk	about	soon,	conventionally	go	in	a	directory	called	launch.

Now	that	you	know	what	a	package	directory	looks	like,	we’re	going	to	talk	about	the
tools	that	you’re	going	to	use	to	run	nodes	from	your	packages.



rosrun
Since	ROS	has	a	large,	distributed	community,	its	software	is	organized	into	packages	that
are	independently	developed	by	community	members.	The	concept	of	a	ROS	package	will
be	described	in	greater	detail	in	subsequent	chapters,	but	a	package	can	be	thought	of	as	a
collection	of	resources	that	are	built	and	distributed	together.	Packages	are	just	locations	in
the	filesystem,	and	because	ROS	nodes	are	typically	executable	programs,	one	could
manually	cd	around	the	filesystem	to	start	all	the	ROS	nodes	of	interest.

For	example,	the	talker	program	lives	in	a	package	named	rospy_tutorials,	and	its
executable	programs	are	found	in	/opt/ros/indigo/share/rospy_tutorials.	However,	chasing
down	these	long	paths	would	become	tiresome	in	large	filesystems,	since	nodes	can	be
deeply	buried	in	large	directory	hierarchies.	To	automate	this	task,	ROS	provides	a
command-line	utility	called	rosrun	that	will	search	a	package	for	the	requested	program
and	pass	it	any	parameters	supplied	on	the	command	line.	The	syntax	is	as	follows:

user@hostname$	rosrun	PACKAGE	EXECUTABLE	[ARGS]

To	run	the	talker	program	in	the	rospy_tutorials	package,	no	matter	where	one
happened	to	be	in	the	filesystem,	one	would	first	start	a	roscore	instance	in	a	terminal
emulator	window:

user@hostname$	roscore

Then,	in	another	terminal	window,	run:

user@hostname$	rosrun	rospy_tutorials	talker

This	will	create	the	ROS	graph	in	Figure	2-3.

Figure	2-3.	A	ROS	graph	with	only	one	node



In	the	terminal	with	talker,	there	will	be	a	sequence	of	timestamp	messages	printing	to
the	console:

user@hostname$	rosrun	rospy_tutorials	talker

[INFO]	[WallTime:	1439847784.336147]	hello	world	1439847784.34

[INFO]	[WallTime:	1439847784.436334]	hello	world	1439847784.44

[INFO]	[WallTime:	1439847784.536316]	hello	world	1439847784.54

[INFO]	[WallTime:	1439847784.636319]	hello	world	1439847784.64

The	talker	program	is	the	ROS	equivalent	of	the	canonical	first	program	whose	task	is	to
print	“Hello,	world!”	to	the	console.	In	the	ROS	case,	since	we	are	dealing	with	message
streams	rather	than	single	statements,	talker	sends	a	stream	of	“hello	world”	messages	10
times	per	second,	appending	the	Unix	timestamp	so	that	it’s	easy	to	tell	that	the	messages
are	changing	over	time.	talker	prints	these	messages	to	the	console	as	well	as	sending
them	via	ROS	to	any	nodes	who	are	listening.

It	is	instructive	to	think	about	how	this	is	implemented.	In	Unix,	every	program	has	a
stream	called	“standard	output,”	or	stdout.	When	an	interactive	terminal	runs	a	“Hello,
world!”	program,	its	stdout	stream	is	received	by	its	parent	terminal	program,	which
renders	the	text	in	a	terminal	emulator	window.	In	ROS,	this	concept	is	extended	so	that
programs	have	an	arbitrary	number	of	streams,	connected	to	an	arbitrary	number	of	other
programs	running	on	machines	anywhere	in	the	network,	any	of	which	can	start	up	or	shut
down	at	any	time.

Therefore,	creating	a	minimal	“Hello,	world!”	system	in	ROS	requires	two	nodes,	with
one	node	sending	a	stream	of	string	messages	to	the	other	nodes.	As	we	have	seen,	talker
will	periodically	send	“hello	world”	as	a	text	message.	Simultaneously,	we	will	start	a
listener	node,	which	will	await	new	string	messages	and	print	them	to	the	console	as
they	arrive.	Whenever	both	of	these	programs	advertise	themselves	to	the	same	roscore,
ROS	will	connect	them	as	shown	in	Figure	2-4.	Note	that	in	Figure	2-4	and	all	future	ROS
graph	renderings,	we	will	omit	roscore	from	the	graph,	since	it	is	implied	by	the
existence	of	the	graph	itself	(i.e.,	without	roscore,	there	could	be	no	ROS	graph).

Figure	2-4.	“Hello,	world!”	in	ROS:	talker	sends	messages	to	listener

To	create	this	graph	on	your	own	computer,	you’ll	need	three	terminal	windows.	The	first
two,	as	before,	will	run	roscore	and	talker,	and	the	third	one	will	run	listener:

user@hostname$	rosrun	rospy_tutorials	listener



[INFO]	[WallTime:	1439848277.141546]	/listener_14364_1439848276913	\

		I	heard	hello	world	1439848277.14

[INFO]	[WallTime:	1439848277.241519]	/listener_14364_1439848276913	\

		I	heard	hello	world	1439848277.24

[INFO]	[WallTime:	1439848277.341668]	/listener_14364_1439848276913	\

		I	heard	hello	world	1439848277.34

[INFO]	[WallTime:	1439848277.441579]	/listener_14364_1439848276913	\

		I	heard	hello	world	1439848277.44

Hooray!	The	talker	node	is	now	sending	messages	to	the	listener	node.	We	can	now
use	some	ROS	command-line	tools	to	query	the	system	and	understand	more	about	what’s
happening.	First,	we	can	use	the	command-line	tool	rostopic,	which	is	an	extremely
useful	tool	for	introspecting	running	ROS	systems.	rostopic	has	many	subcommands	that
will	be	introduced	in	later	chapters,	but	its	simplest	and	most-commonly	used
subcommand	is	to	print	the	list	of	current	message	topics	to	the	console.	While	leaving	the
other	three	terminals	open	and	running	(that	is,	the	terminals	with,	roscore,	talker,	and
listener),	open	a	fourth	terminal	window	and	launch	the	ROS	Qt-based	graph	visualizer,
rqt_graph:

user@hostname$	rqt_graph

This	will	bring	up	a	display	that	produces	renderings	similar	to	those	shown	in	Figure	2-4.
The	renderings	will	not	autorefresh,	but	you	can	click	the	refresh	icon	in	the	upper-left
corner	of	the	rqt_graph	window	when	you	add	a	node	to	or	remove	one	from	the	ROS
graph	by	terminating	(e.g.,	pressing	Ctrl-C)	or	running	(via	rosrun)	its	program,	and	the
graph	will	be	redrawn	to	represent	the	current	state	of	the	system.

Now	that	we	have	a	ROS	graph	up	and	running,	we	can	demonstrate	some	of	the	benefits
of	this	message-passing	architecture.	Imagine	that	you	wanted	to	create	a	log	file	of	these
“hello	world”	messages.	Typical	ROS	development	follows	the	pattern	of	an	anonymous
publish/subscribe	system:	nodes	generally	do	not	receive	or	use	any	details	about	the
identity	or	function	of	the	peer	nodes,	where	their	inbound	messages	are	coming	from,	or
where	they	are	going.	There	are	special	cases	(for	example,	debugging	tools)	that	acquire
and	use	this	information,	but	generally	speaking,	typical	ROS	development	does	not,	with
the	goal	that	software	modules	will	work	with	a	wide	variety	of	peer	nodes.

We	can	thus	create	a	generic	logger	program	that	writes	all	incoming	messages	to	disk,
and	tie	that	to	talker,	as	shown	in	Figure	2-5.



Figure	2-5.	“Hello,	world”	with	a	logging	node

Perhaps	we	want	to	run	our	“Hello,	world!”	program	on	two	different	computers	and	have
a	single	node	receive	both	of	their	messages.	Without	having	to	modify	any	source	code,
we	can	just	start	talker	twice,	calling	the	nodes	talker1	and	talker2,	respectively,	and
ROS	will	connect	them	as	shown	in	Figure	2-6.

Figure	2-6.	Instantiating	two	“Hello,	world!”	programs	and	routing	them	to	the	same	receiver

Perhaps	we	want	to	simultaneously	log	and	print	both	of	those	streams?	Again,	this	can	be
accomplished	without	modifying	any	source	code;	ROS	will	happily	route	the	streams	as
shown	in	Figure	2-7.



Figure	2-7.	Two	“Hello,	world!”	programs	with	two	listeners

Of	course,	a	typical	robot	is	more	complicated	than	this	“Hello,	world!”	example.	For
example,	the	“fetch	an	item”	problem	described	at	the	beginning	of	this	chapter	was
implemented	on	Stanford’s	STAIR	robot	in	the	early	days	of	ROS	development,	using	the
exact	graph	previously	shown	as	Figure	2-1	and	reprinted	as	Figure	2-8	for	convenience.
This	system	included	22	programs	running	on	4	computers	and	would	now	be	considered
a	relatively	simple	software	system.



Figure	2-8.	ROS	graph	of	a	fetch-an-item	robot

In	Figure	2-8,	the	STAIR	navigation	system	is	approximately	the	upper	half	of	the	graph,
and	its	vision	and	grasping	systems	are	in	the	lower-right	corner.	It	is	interesting	to	note
that	this	graph	is	sparse,	with	most	nodes	connecting	to	a	very	small	number	of	other
nodes.	This	property	is	commonly	seen	in	ROS	graphs	and	can	serve	as	a	check	on	a
software	architecture:	if	a	ROS	graph	starts	looking	like	a	star,	where	most	nodes	are
streaming	data	to	or	from	a	central	node,	it	is	often	worthwhile	to	re-assess	the	flow	of
data	and	separate	functions	into	smaller	pieces.	The	goal	is	to	create	small,	manageable
functional	units,	which	ideally	can	be	reused	in	other	applications	on	other	robots.

Although	rosrun	is	great	for	starting	single	ROS	nodes	during	debugging	sessions,	most
robot	systems	end	up	consisting	of	tens	or	hundreds	of	nodes,	all	running	at	the	same	time.
Since	it	wouldn’t	be	practical	to	call	rosrun	on	each	of	these	nodes,	ROS	includes	a	tool
for	starting	collections	of	nodes,	called	roslaunch.	We’ll	look	at	roslaunch	shortly,	but
first	we	need	to	talk	about	how	things	are	named	in	ROS.



Names,	Namespaces,	and	Remapping
Names	are	a	fundamental	concept	in	ROS.	Nodes,	message	streams	(often	called	“topics”),
and	parameters	must	all	have	unique	names.	For	example,	the	camera	node	on	a	robot
could	be	named	camera,	and	it	could	output	a	message	topic	named	image	and	read	a
parameter	named	frame_rate	to	know	how	fast	to	send	images.

So	far,	so	good.	But,	what	happens	when	a	robot	has	two	cameras?	We	wouldn’t	want	to
have	to	write	a	separate	program	for	each	camera,	nor	would	we	want	the	output	of	both
cameras	to	be	interleaved	on	the	image	topic,	since	that	would	require	all	subscribers	to
image	to	have	logic	that	separates	the	image	streams.

More	generally,	namespace	collisions	are	extremely	common	in	robotic	systems,	which
often	contain	identical	hardware	or	software	subsystems	to	simplify	their	engineering,
such	as	identical	left	and	right	arms,	cameras,	or	wheels.	ROS	provides	two	mechanisms
to	handle	these	situations:	namespaces	and	remapping.

Namespaces	are	a	fundamental	concept	throughout	computer	science.	Following	the
convention	of	Unix	paths	and	Internet	URIs,	ROS	uses	the	forward	slash	(/)	to	delimit
namespaces.	Just	like	how	two	files	named	readme.txt	can	exist	in	separate	paths,	such	as
/home/user1/readme.txt	and	/home/user2/readme.txt,	ROS	can	launch	identical	nodes	into
separate	namespaces	to	avoid	name	collisions.

In	the	previous	example,	a	robot	with	two	cameras	could	launch	two	camera	drivers	in
separate	namespaces,	such	as	left	and	right,	which	would	result	in	image	streams	named
left/image	and	right/image.

This	avoids	a	topic	name	collision,	but	how	could	we	send	these	data	streams	to	another
program	that	was	still	expecting	to	receive	messages	on	the	topic	image?	One	answer
would	be	to	launch	this	other	program	in	the	same	namespace	as	the	first,	but	perhaps	this
program	needs	to	“reach	into”	more	than	one	namespace.	Enter	remapping.

In	ROS,	any	string	in	a	program	that	defines	a	name	can	be	remapped	at	runtime.	As	one
example,	there	is	a	commonly	used	program	in	ROS	called	image_view	that	renders	a	live
video	window	of	images	being	sent	on	the	image	topic.	At	least,	that	is	what	is	written	in
the	source	code	of	the	image_view	program.	Using	remapping,	we	can	instead	cause	the
image_view	program	to	render	the	right/image	topic,	or	the	left/image	topic,	without
having	to	modify	the	source	code	of	image_view!

Because	ROS	design	patterns	try	to	encourage	reuse	of	software,	remapping	names	is	very
common	when	developing	and	deploying	ROS	software.	To	simplify	this	operation,	ROS
provides	a	standard	syntax	to	remap	names	when	starting	nodes	on	the	command	line.	For
example,	if	the	working	directory	contains	the	image_view	program,	one	could	type	the
following	to	map	image	to	right/image:

user@hostname$	./image_view	image:=right/image



This	command-line	remapping	would	produce	the	graph	shown	in	Figure	2-9.

Figure	2-9.	Image	topic	has	right/image	using	command-line	remapping

Pushing	a	node	into	a	namespace	can	be	accomplished	with	a	special	__ns	namespace-
remapping	syntax	(note	the	double	underscore).	For	example,	if	the	working	directory
contains	the	camera	program,	the	following	shell	command	would	launch	camera	into	the
namespace	right:

user@hostname$	./camera	__ns:=right

Just	as	for	filesystems,	web	URLs,	and	countless	other	domains,	ROS	names	must	be
unique.	If	the	same	node	is	launched	twice,	roscore	directs	the	older	node	to	exit	to	make
way	for	the	newer	instance	of	the	node.

Earlier	in	this	chapter,	a	graph	was	shown	that	had	two	nodes,	talker1	and	talker2,
sending	data	to	a	node	named	listener.	To	change	the	name	of	a	node	on	the	command
line,	the	special	__name	remapping	syntax	can	be	used.	This	changes	the	name	of	a
program	when	it	is	launched	(again,	note	the	double	underscore).	The	following	two	shell
commands	would	launch	two	instances	of	talker,	one	named	talker1	and	one	named
talker2,	as	was	shown	in	Figure	2-6:

user@hostname$	./talker	__name:=talker1

user@hostname$	./talker	__name:=talker2

The	previous	examples	demonstrated	that	ROS	topics	can	be	remapped	quickly	and	easily
on	the	command	line.	This	is	useful	for	debugging	and	for	initially	hacking	systems
together	when	experimenting	with	various	ideas.	However,	after	typing	long	command-
line	strings	a	few	times,	it’s	time	to	automate	them!	The	roslaunch	tool	was	created	for
this	purpose.



roslaunch
roslaunch	is	a	command-line	tool	designed	to	automate	the	launching	of	collections	of
ROS	nodes.	On	the	surface,	it	looks	a	lot	like	rosrun,	needing	a	package	name	and	a
filename:

user@hostname$	roslaunch	PACKAGE	LAUNCH_FILE

However,	roslaunch	operates	on	launch	files,	rather	than	nodes.	Launch	files	are	XML
files	that	describe	a	collection	of	nodes	along	with	their	topic	remappings	and	parameters.
By	convention,	these	files	have	a	suffix	of	.launch.	For	example,	here	is
talker_listener.launch	in	the	rospy_tutorials	package:

<launch>

		<node	name="talker"	pkg="rospy_tutorials"

								type="talker.py"	output="screen"	/>

		<node	name="listener"	pkg="rospy_tutorials"

								type="listener.py"	output="screen"	/>

</launch>

Each	<node>	tag	includes	attributes	declaring	the	ROS	graph	name	of	the	node,	the
package	in	which	it	can	be	found,	and	the	type	of	node,	which	is	simply	the	filename	of
the	executable	program.	In	this	example,	the	output="screen"	attributes	indicate	that	the
talker	and	listener	nodes	should	dump	their	console	outputs	to	the	current	console,
instead	of	only	to	log	files.	This	is	a	commonly	used	setting	for	debugging;	once	things
start	working,	it	is	often	convenient	to	remove	this	attribute	so	that	the	console	has	less
noise.

roslaunch	has	many	other	important	features,	such	as	the	ability	to	launch	programs	on
other	computers	across	the	network	via	ssh,	to	automatically	respawn	nodes	that	crash,
and	so	on.	These	features	will	be	described	throughout	the	book	as	they	are	necessary	to
accomplish	various	tasks.	One	of	the	most	useful	features	of	roslaunch	is	that	it	closes	all
of	its	nodes	when	Ctrl-C	is	pressed	in	the	console	containing	roslaunch.	Ctrl-C	is	a
common	way	to	force	programs	to	exit	on	the	Linux/Unix	command	line,	and	roslaunch
follows	this	convention	by	closing	its	collection	of	launched	nodes	and	then	finally	exiting
roslaunch	itself	when	Ctrl-C	is	typed	into	its	console.	For	example,	the	following
command	would	cause	roslaunch	to	spawn	two	nodes	to	form	a	talker-listener	pair,	as
described	in	the	talker_listener.launch	file	listed	previously:

user@hostname$	roslaunch	rospy_tutorials	talker_listener.launch

And,	equally	importantly,	pressing	Ctrl-C	would	cause	the	nodes	to	exit.	Virtually	every
time	you	use	ROS,	you’ll	be	invoking	roslaunch	and	eventually	typing	Ctrl-C	in	the
roslaunch	terminal(s)	to	create	and	destroy	various	collections	of	nodes.

roslaunch	will	automatically	instantiate	a	roscore	if	one	does	not	exist	when	roslaunch



is	invoked.	However,	this	roscore	will	exit	when	Ctrl-C	is	pressed	in	the	roslaunch
window.	If	you	have	more	than	one	terminal	open	when	launching	ROS	programs,	it’s
often	easier	to	remember	to	launch	a	roscore	in	a	separate	terminal,	which	is	left	open
during	the	entire	ROS	session.	Then,	you	can	roslaunch	and	Ctrl-C	with	abandon	in	all
other	consoles,	without	risk	of	losing	the	roscore	tying	the	whole	system	together.

Before	we	start	to	look	at	writing	some	code	with	ROS,	there’s	one	more	thing	to	cover
that	will	save	you	time	and	heartache	as	you	try	to	remember	the	names	of	packages,
nodes,	and	launch	files:	tab	completion.



The	Tab	Key
The	ROS	command-line	tools	have	tab-completion	support.	When	using	rosrun,	for
example,	hitting	the	Tab	key	in	the	middle	of	typing	a	package	name	will	auto-complete	it
for	you;	or,	if	there	are	multiple	potential	completions,	pressing	Tab	again	will	present	you
with	a	list	of	possible	completions.	As	with	many	other	Linux	commands,	using	tab
completion	with	ROS	will	save	you	a	massive	amount	of	typing,	and	help	avoid	spelling
errors	when	trying	to	type	long	package	or	message	names.	For	example,	typing:

user@hostname$	rosrun	rospy_tutorials	ta[TAB]

will	autocomplete	to:

user@hostname$	rosrun	rospy_tutorials	talker

since	no	other	programs	in	the	rospy_tutorials	package	begin	with	ta.	Additionally,
rosrun	(like	virtually	all	ROS	core	tools)	will	autocomplete	package	names.	For	example,
typing:

user@hostname$	rosrun	rospy_tu[TAB]

will	autocomplete	to:

user@hostname$	rosrun	rospy_tutorials

since	no	other	packages	currently	loaded	begin	with	rospy_tu.

TIP
It’s	hard	to	emphasize	this	enough:	pound	the	Tab	key	furiously	when	using	the	core	ROS	tools,	or	other
standard	Unix	command-line	tools.	The	Tab	key	is	a	huge	time-saver!



tf:	Coordinate	Transforms
The	“fetch	an	item”	task	described	in	“The	ROS	Graph”	includes	many,	many	problems	to
tackle,	encompassing	nearly	every	aspect	of	robotics	and	artificial	intelligence	(that’s	one
reason	that	it	made	such	a	great	challenge	problem	to	drive	the	design	of	ROS).	One
problem	that	might	not	be	immediately	obvious,	but	is	extremely	important,	is	the
management	of	coordinate	frames.	Seriously,	coordinate	frames	are	a	big	deal	in	robotics.



Poses,	Positions,	and	Orientations
Your	average	item-fetching	robot	will	have	a	bunch	of	subsystems,	such	as	a	mobile	base,
a	laser	scanner	attached	to	the	base	to	allow	it	to	navigate	through	the	world,	a	camera
(visual	and/or	depth)	attached	elsewhere	to	the	base	to	find	items	to	be	fetched,	and	a
manipulator	arm	with	a	hand	that	will	do	the	actual	grabbing	of	those	items.	A	really	good
item-fetching	robot	might	have	many	more	features,	but	these	are	already	plenty	to	make
coordinate	frames	an	important	concern.

Let’s	start	with	the	laser	on	the	base.	To	correctly	interpret	a	range	scan	produced	by	the
laser,	we	need	to	know	exactly	where	on	the	base	the	laser	is	attached.	Is	it	mounted	at	the
front	of	the	base?	The	back?	Is	it	facing	backward?	Is	it	mounted	upside-down	(which	is
not	uncommon)?	More	generally,	we	could	ask:	what	are	the	position	and	orientation	of
the	laser	with	respect	to	the	base?

We	actually	need	to	be	a	bit	more	careful	than	that,	asking:	what	are	the	position	and
orientation	of	the	origin	of	the	laser	with	respect	to	the	origin	of	the	base?	Before	we	can
talk	about	physical	relationships	between	components	on	our	robot,	we	need	to	pick	for
each	component	a	coordinate	frame	of	reference,	or	origin.	In	general,	you	can	choose	the
origin	arbitrarily,	though	there’s	usually	a	widely	used	convention	that	should	be	followed.
For	example,	a	mobile	base	should	have	its	origin	at	the	geometric	centroid	of	the	base,
with	the	positive	x-axis	pointing	forward,	the	positive	y-axis	pointing	left,	and	the	positive
z-axis	pointing	up	(you	could	have	inferred	the	z-axis	direction	because	we	always	use
righthanded	coordinate	systems).	Other	than	following	such	conventions,	the	important
thing	is	that	everyone	understand	and	agree	on	(usually	via	documentation)	where	each
component’s	origin	is.

Let’s	establish	some	terminology.	In	our	3D	world,	a	position	is	a	vector	of	three	numbers
(x,	y,	z)	that	describe	how	far	we	have	translated	along	each	axis,	with	respect	to	some
origin.	Similarly,	an	orientation	is	a	vector	of	three	numbers	(roll,	pitch,	yaw)	that
describe	how	far	we	have	rotated	about	each	axis,	again	with	respect	to	some	origin.3
Taken	together,	a	(position,	orientation)	pair	is	called	a	pose.	For	clarity,	this	kind	of	pose,
which	varies	in	six	dimensions	(three	for	translation	plus	three	for	rotation)	is	sometimes
called	a	6D	pose.	Given	the	pose	of	one	thing	relative	to	another,	we	can	transform	data
between	their	frames	of	reference,	a	process	that	usually	involves	some	matrix
multiplications.

Restating	our	earlier	question,	we	need	to	know:	what	is	the	pose	(of	the	origin)	of	the
laser	with	respect	to	the	pose	(of	the	origin)	of	the	base?	That’s	not	all,	of	course.	And	if
we’re	going	to	use	the	base-mounted	camera	to	find	items	in	the	environment,	then	we
likely	need	to	know	the	camera’s	pose	with	respect	to	the	base.	If	we’re	going	to	use	the
locations	of	items	found	by	the	camera	to	send	goals	to	the	hand,	then	we	further	need	to
know	the	pose	of	the	camera	with	respect	to	the	hand.	This	case	is	especially	interesting
because	the	camera-to-hand	relationship	might	be	changing	all	the	time	as	the	arm	moves
the	hand	with	respect	to	the	camera.	Then	you	have	the	mobile	base	moving	around	in	the



world	(e.g.,	defined	by	a	map),	so	there’s	a	base-to-world	relationship	that	is	also
constantly	changing.

We	could	go	on,	but	by	now	the	point	should	be	clear:	you	will,	eventually,	want	to	be
able	to	compute	the	pose	of	every	component	of	your	robot	with	respect	to	every	other
pose.	Some	relationships	are	static	(e.g.,	a	laser	bolted	to	a	base),	while	others	are	dynamic
(e.g.,	a	hand	reaching	to	grasp	an	item).	We	need	to	capture	and	combine	all	of	these
relationships,	ideally	in	such	a	way	that	we	can	easily	convert	sensor	data	and	actuator
commands	among	them,	while	doing	as	little	math	as	possible	(because	if	we	do	the	math
ourselves,	we’ll	just	get	it	wrong).	Enter	tf.



tf
There	are	many	ways	to	manage	coordinate	frames	and	transforms	between	them.	In	ROS,
continuing	with	the	philosophy	of	keeping	things	small	and	modular,	we	take	a	distributed
approach,	using	ROS	topics	to	share	transform	data.	Any	node	can	be	the	authority	that
publishes	the	current	information	for	some	transform(s),	and	any	node	can	subscribe	to
transform	data,	gathering	from	all	the	various	authorities	a	complete	picture	of	the	robot.
This	system	is	implemented	in	the	tf	(short	for	transform)	package,	which	is	extremely
widely	used	throughout	ROS	software.

This	approach	makes	a	lot	of	sense	when	you	consider	that	there’s	usually	one	place	where
the	information	for	a	given	transform	is	most	easily	acquired	or	computed.	For	example,
the	driver	that	talks	to	a	robot	arm	and	has	direct	access	to	its	joint	encoder	data	might	be
the	best	node	to	publish	the	information	about	the	transform	from	the	start	of	the	arm	to
the	hand	at	the	other	end.4	Similarly,	the	node	that	is	performing	localization	of	the	base
with	respect	to	a	map	is	the	best	authority	for	the	base-to-world	transform.

We	need	names	for	coordinate	frames.	In	tf,	we	use	strings.	The	frame	of	the	laser
attached	to	the	base	might	be	called	"laser"	or,	if	there’s	the	potential	for	confusion,
"front_laser".	You	can	pick	any	names	you	like,	so	long	as	they’re	unique	(and	you
should	follow	established	naming	conventions	wherever	they	exist).

We	also	need	a	message	format	to	use	when	publishing	information	about	transforms.	In
tf,	we	use	tf/tfMessage,	sent	over	the	/tf	topic.	You	don’t	need	to	know	the	details	of
this	message,	because	you’re	unlikely	to	ever	manipulate	one	manually.	It’s	enough	to
know	that	each	tf/tfMessage	message	contains	a	list	of	transforms,	specifying	for	each
one	the	names	of	the	frames	involved	(referred	to	as	parent	and	child),	their	relative
position	and	orientation,	and	the	time	at	which	that	transform	was	measured	or	computed.

Time	turns	out	to	be	extremely	important	when	we	talk	about	sensor	data	and	coordinate
frames.	If	you	want	to	combine	a	laser	scan	from	one	second	ago	with	a	scan	from	five
seconds	ago,	then	you	had	better	keep	track	of	where	that	laser	was	over	time	and	be	able
to	convert	the	scan	data	between	its	one-second-ago	pose	and	its	five-seconds-ago	pose.

We	don’t	want	every	node	that	works	with	transform	data	to	reinvent	the	publishing,
subscribing,	remembering,	or	computing	of	transforms.	So,	tf	also	provides	a	set	of
libraries	that	can	be	used	in	any	node	to	perform	those	common	tasks.	For	example,	if	you
create	a	tf	listener	in	your	node,	then,	behind	the	scenes,	your	node	will	subscribe	to	the
/tf	topic	and	maintain	a	buffer	of	all	the	tf/tfMessage	data	published	by	other	nodes	in
the	system.	Then	you	can	ask	questions	of	tf,	like:	Where	is	the	laser	with	respect	to	the
base?	Or,	where	was	the	hand	with	respect	to	the	map	two	seconds	ago?	Or,	how	does	this
point	cloud	taken	from	the	depth	camera	look	in	the	frame	of	the	laser?	In	each	case,	the
tf	libraries	handle	all	the	matrix	manipulations	for	you,	chaining	together	transforms	and
going	back	in	time	through	its	buffer	as	needed.



As	is	often	the	case	for	a	powerful	system,	tf	is	relatively	complex,	and	there	are	a	variety
of	ways	in	which	things	can	go	wrong.	Consequently,	there	a	number	of	tf-specific
introspection	and	debugging	tools	to	help	you	understand	what’s	happening,	from	printing
a	single	transform	on	the	console	to	rendering	a	graphical	view	of	the	entire	transform
hierarchy.

There	is	much,	much	more	to	know	about	the	tf	system,	but	for	the	work	that	we’ll	do	in
the	rest	of	this	book,	this	introduction	should	be	enough	for	you	to	understand	what’s
happening.	When	you	get	to	the	point	that	you	want	to	start	publishing	and	manipulating
transforms	yourself,	start	with	the	tf	documentation.

http://wiki.ros.org/tf?distro=indigo


Summary
In	this	chapter,	we	looked	at	the	ROS	graph	architecture	and	introduced	you	to	the	tools
such	as	catkin,	rosrun,	and	roslaunch	that	you’ll	be	using	to	interact	with	the	ROS
graph.	We	also	introduced	the	ROS	namespace	conventions	and	showed	how	namespaces
can	be	remapped	to	avoid	collisions.	We	further	discussed	the	importance	of	coordinate
transforms	and	how	they’re	handled	in	ROS	by	the	tf	system.

Now	that	you	understand	the	underlying	architecture	of	a	ROS	system,	it’s	time	to	look	at
what	sorts	of	messages	the	nodes	might	send	to	one	another	and	how	these	messages	are
composed,	sent,	and	received,	and	to	think	about	some	of	the	computations	that	the	nodes
might	be	doing.	That	brings	us	to	topics,	the	fundamental	communication	method	in	ROS.
1	Actually,	it	creates	a	symbolic	link	to	a	system-wide	CMakeLists.txt	file.
2	Unfortunately,	Ubuntu	software	is	also	organized	into	packages.	The	ROS	Ubuntu
packages	(the	things	you	install	with	apt-get)	are	conceptually	different	from	ROS
packages.	In	this	book,	we’ll	use	“ROS	package”	or	simply	“package”	when	referring	to	a
ROS	package.	We’ll	use	“Ubuntu	package”	to	refer	to	an	Ubuntu	package.
3	For	a	variety	of	reasons,	we	actually	represent	orientation	using	a	quaternion,	which
comprises	four	numbers,	but	we	can	ignore	that	for	the	purpose	of	this	discussion.
4	In	practice,	an	arm	driver	will	publish	just	the	joint	encoder	data	and	let	the
robot_state_publisher	compute	the	full	6D	transforms,	as	described	in	“Verifying
Transforms”.





Chapter	3.	Topics

As	we	saw	in	the	previous	chapter,	ROS	systems	consist	of	a	number	of	independent
nodes	that	comprise	a	graph.	These	nodes	by	themselves	are	typically	not	very	useful.
Things	only	get	interesting	when	nodes	communicate	with	each	other,	exchanging
information	and	data.	The	most	common	way	to	do	that	is	through	topics.	A	topic	is	a
name	for	a	stream	of	messages	with	a	defined	type.	For	example,	the	data	from	a	laser
range-finder	might	be	sent	on	a	topic	called	scan,	with	a	message	type	of	LaserScan,
while	the	data	from	a	camera	might	be	sent	over	a	topic	called	image,	with	a	message	type
of	Image.

Topics	implement	a	publish/subscribe	communication	mechanism,	one	of	the	more
common	ways	to	exchange	data	in	a	distributed	system.	Before	nodes	start	to	transmit	data
over	topics,	they	must	first	announce,	or	advertise,	both	the	topic	name	and	the	types	of
messages	that	are	going	to	be	sent.	Then	they	can	start	to	send,	or	publish,	the	actual	data
on	the	topic.	Nodes	that	want	to	receive	messages	on	a	topic	can	subscribe	to	that	topic	by
making	a	request	to	roscore.	After	subscribing,	all	messages	on	the	topic	are	delivered	to
the	node	that	made	the	request.	One	of	the	main	advantages	to	using	ROS	is	that	all	the
messy	details	of	setting	up	the	necessary	connections	when	nodes	advertise	or	subscribe	to
topics	is	handled	for	you	by	the	underlying	communication	mechanism	so	that	you	don’t
have	to	worry	about	it	yourself.

In	ROS,	all	messages	on	the	same	topic	must	be	of	the	same	data	type.	Although	ROS
does	not	enforce	it,	topic	names	often	describe	the	messages	that	are	sent	over	them.	For
example,	on	the	PR2	robot,	the	topic	/wide_stereo/right/image_color	is	used	for	color
images	from	the	rightmost	camera	of	the	wide-angle	stereo	pair.

We’ll	start	off	by	looking	at	how	a	node	advertises	a	topic	and	publishes	data	on	it.

NOTE
In	this	section,	and	in	much	of	the	rest	of	the	book,	we’re	going	to	assume	that	you	know	how	to	create
workspaces	and	packages,	and	how	to	structure	the	files	in	them.	If	you	can’t	remember	how	to	do	this,	you
should	refresh	your	memory	by	looking	at	“catkin,	Workspaces,	and	ROS	Packages”	again.	If	you’re	unsure
about	things,	you	can	take	a	look	at	the	code	that	goes	along	with	this	book,	since	things	should	be	laid	out
correctly	there.



Publishing	to	a	Topic
Example	3-1	shows	the	basic	code	for	advertising	a	topic	and	publishing	messages	on	it.
This	node	publishes	consecutive	integers	on	the	topic	counter	at	a	rate	of	2	Hz.

Example	3-1.	topic_publisher.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	Int32

rospy.init_node('topic_publisher')

pub	=	rospy.Publisher('counter',	Int32)

rate	=	rospy.Rate(2)

count	=	0

while	not	rospy.is_shutdown():

				pub.publish(count)

				count	+=	1

				rate.sleep()

The	first	line:

#!/usr/bin/env	python

is	known	as	the	shebang.	It	lets	the	operating	system	know	that	this	is	a	Python	file,	and
that	it	should	be	passed	to	the	Python	interpreter.	Since	we’re	going	to	be	running	the
nodes	we	write	as	programs,	we	also	have	to	set	execute	permissions	on	them	using	the
Linux	chmod	command:

user@hostname$	chmod	u+x	topic_publisher.py

This	particular	invocation	of	chmod	will	allow	the	owner	of	the	file	to	execute	it.	You
should	take	a	moment	to	look	up	the	documentation	for	chmod	to	understand	permissions
and	how	to	set	them,	either	using	the	Linux	man	pages	or	by	searching	for	chmod	on	the
Web.

The	second	line:

import	rospy

appears	in	every	ROS	Python	node	and	imports	all	of	the	basic	functionality	that	we’ll
need.	The	next	line	imports	the	definition	of	the	message	that	we’re	going	to	send	over	the
topic:

from	std_msgs.msg	import	Int32

In	this	case,	we’re	going	to	use	a	32-bit	integer,	defined	in	the	ROS	standard	message
package,	std_msgs.	For	the	import	to	work	as	expected,	we	need	to	import	from	<package



name>.msg,	since	this	is	where	the	package	definitions	are	stored	(more	on	this	later).
Since	we’re	using	a	message	from	another	package,	we	have	to	tell	the	ROS	build	system
about	this	by	adding	a	dependency	to	our	package.xml	file:

<depend	package="std_msgs"	/>

Without	this	dependency,	ROS	will	not	know	where	to	find	the	message	definition,	and
the	node	will	not	be	able	to	run.

After	initializing	the	node,	we	advertise	it	with	a	Publisher:

pub	=	rospy.Publisher('counter',	Int32)

This	gives	the	topic	a	name	(counter)	and	specifies	the	type	of	message	that	will	be	sent
over	it	(Int32).	Behind	the	scenes,	the	publisher	also	sets	up	a	connection	to	roscore	and
sends	some	information	to	it.	When	another	node	tries	to	subscribe	to	the	counter	topic,
roscore	will	share	its	list	of	publishers	and	subscribers,	which	the	nodes	will	then	use	to
create	direct	connections	between	all	publishers	and	of	all	subscribers	to	each	topic.

At	this	point,	the	topic	is	advertised	and	is	available	for	other	nodes	to	subscribe	to.	Now
we	can	go	about	actually	publishing	messages	over	the	topic:

rate	=	rospy.Rate(2)

count	=	0

while	not	rospy.is_shutdown():

				pub.publish(count)

				count	+=	1

				rate.sleep()

First,	we	set	the	rate,	in	hertz,	at	which	we	want	to	publish.	For	this	example,	we’re	going
to	publish	twice	a	second.	The	is_shutdown()	function	will	return	True	if	the	node	is
ready	to	be	shut	down	and	False	otherwise,	so	we	can	use	this	to	determine	if	it	is	time	to
exit	the	while	loop.

Inside	the	while	loop,	we	publish	the	current	value	of	the	counter,	increment	its	value	by
1,	and	then	sleep	for	a	while.	The	call	to	rate.sleep()	will	sleep	for	long	enough	to	make
sure	that	we	run	the	body	of	the	while	loop	at	approximately	2	Hz.

And	that’s	it.	We	now	have	a	minimalist	ROS	node	that	advertises	the	counter	topic	and
publishes	integers	on	it.



Checking	That	Everything	Works	as	Expected
Now	that	we	have	a	node	set	up,	let’s	verify	that	it	works.	We	can	use	the	rostopic
command	to	dig	into	the	currently	available	topics.	Open	a	new	terminal,	and	start	up
roscore.	Once	it’s	running,	you	can	see	what	topics	are	available	by	running	rostopic
list	in	another	terminal:

user@hostname$	rostopic	list

/rosout

/rosout_agg

These	topics	are	used	by	ROS	for	logging	and	debugging;	don’t	worry	about	them.	If	you
ever	forget	what	the	arguments	to	rostopic	are,	then	you	can	use	the	-h	flag	to	list	them.
This	generally	works	for	the	other	ROS	command-line	tools,	too:

user@hostname$	rostopic	-h

rostopic	is	a	command-line	tool	for	printing	information	about	ROS	Topics.

Commands:

	 rostopic	bw	 display	bandwidth	used	by	topic

	 rostopic	echo	 print	messages	to	screen

	 rostopic	find	 find	topics	by	type

	 rostopic	hz	 display	publishing	rate	of	topic

	 rostopic	info	 print	information	about	active	topic

	 rostopic	list	 list	active	topics

	 rostopic	pub	 publish	data	to	topic

	 rostopic	type	 print	topic	type

Type	rostopic	<command>	-h	for	more	detailed	usage,	e.g.	'rostopic	echo	-h'

Now,	run	the	node	we’ve	just	looked	at	in	yet	another	terminal.	Make	sure	that	the	basics
package	is	in	a	workspace,	and	you’ve	sourced	the	setup	file	for	that	workspace:

user@hostname$	rosrun	basics	topic_publisher.py

Remember	that	the	basics	directory	has	to	be	in	your	catkin	workspace,	and	that,	if	you
typed	in	the	code	for	the	node	yourself,	the	file	will	need	to	have	its	execute	permissions
set	using	chmod.	Once	the	node	is	running,	you	can	verify	that	the	counter	topic	is
advertised	by	running	rostopic	list	again:

user@hostname$	rostopic	list

/counter

/rosout

/rosout_agg

Even	better,	you	can	see	the	messages	being	published	to	the	topic	by	running	rostopic
echo:

user@hostname$	rostopic	echo	counter	-n	5

data:	681

---

data:	682

---

data:	683

---



data:	684

---

data:	685

---

The	-n	5	flag	tells	rostopic	to	only	print	out	five	messages.	Without	it,	it	will	happily	go
on	printing	messages	forever,	until	you	stop	it	with	a	Ctrl-C.	We	can	also	use	rostopic	to
verify	that	we’re	publishing	at	the	rate	we	think	we	are:

user@hostname$	rostopic	hz	counter

subscribed	to	[/counter]

average	rate:	2.000

	 min:	0.500s	max:	0.500s	std	dev:	0.00000s	window:	2

average	rate:	2.000

	 min:	0.500s	max:	0.500s	std	dev:	0.00004s	window:	4

average	rate:	2.000

	 min:	0.500s	max:	0.500s	std	dev:	0.00006s	window:	6

average	rate:	2.000

	 min:	0.500s	max:	0.500s	std	dev:	0.00005s	window:	7

rostopic	hz	has	to	be	stopped	with	a	Ctrl-C.	Similarly,	rostopic	bw	will	give
information	about	the	bandwidth	being	used	by	the	topic.

You	can	also	find	out	about	an	advertised	topic	with	rostopic	info:

user@hostname$	rostopic	info	counter

Type:	std_msgs/Int32

Publishers:

	*	/topic_publisher	(http://hostname:39964/)

Subscribers:	None

This	reveals	that	counter	carries	messages	of	type	std_msgs/Int32,	that	it	is	currently
being	advertised	by	topic_publisher,	and	that	no	one	is	currently	subscribing	to	it.	Since
it’s	possible	for	more	than	one	node	to	publish	to	the	same	topic	and	for	more	than	one
node	to	be	subscribed	to	a	topic,	this	command	can	help	you	make	sure	things	are
connected	in	the	way	that	you	think	they	are.	Here,	the	publisher	topic_publisher	is
running	on	the	computer	hostname	and	is	communicating	over	TCP	port	39964.1	rostopic
type	works	similarly	but	only	returns	the	message	type	for	a	given	topic.

Finally,	you	can	find	all	of	the	topics	that	publish	a	certain	message	type	using	rostopic
find:

user@hostname$	rostopic	find	std_msgs/Int32

/counter

Note	that	you	have	to	give	both	the	package	name	(std_msgs)	and	the	message	type
(Int32)	for	this	to	work.

So,	now	we	have	a	node	that’s	happily	publishing	consecutive	integers,	and	we	can	verify
that	everything	is	as	it	should	be.	Now	let’s	turn	our	attention	to	a	node	that	subscribes	to
this	topic	and	uses	the	messages	it	is	receiving.



TIP
As	you	work	through	this	book,	you’ll	probably	notice	that	we	use	a	number	of	Linux	command-line	tools
and	talk	about	some	of	the	underlying	mechanisms	in	Linux,	such	as	the	use	of	TCP	ports.	You	can	use
ROS	with	only	a	vague	idea	of	what	these	things	are.	However,	if	you’re	going	to	be	using	ROS	a	lot,	then
it’s	probably	a	good	idea	to	learn	some	more	about	Linux	and	what’s	going	on	under	the	hood.	Knowing	a
bit	about	the	operating	system	and	how	to	work	on	the	command	line	will	make	you	more	efficient,	and
will	often	help	you	debug	problems	with	your	ROS	system	much	faster.



Subscribing	to	a	Topic
Example	3-2	shows	a	minimalist	node	that	subscribes	to	the	counter	topic	and	prints	out
the	values	in	the	messages	as	they	arrive.

Example	3-2.	topic_subscriber.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	Int32

def	callback(msg):

				print	msg.data

rospy.init_node('topic_subscriber')

sub	=	rospy.Subscriber('counter',	Int32,	callback)

rospy.spin()

The	first	interesting	part	of	this	code	is	the	callback	that	handles	the	messages	as	they
come	in:

def	callback(msg):

				print	msg.data

ROS	is	an	event-driven	system,	and	it	uses	callback	functions	heavily.	Once	a	node	has
subscribed	to	a	topic,	every	time	a	message	arrives	on	it	the	associated	callback	function	is
called,	with	the	message	as	its	parameter.	In	this	case,	the	function	simply	prints	out	the
data	contained	in	the	message	(see	“Defining	Your	Own	Message	Types”	for	more	details
about	messages	and	what	they	contain).

After	initializing	the	node,	as	before,	we	subscribe	to	the	counter	topic:

sub	=	rospy.Subscriber('counter',	Int32,	callback)

We	give	the	name	of	the	topic,	the	message	type	of	the	topic,	and	the	name	of	the	callback
function.	Behind	the	scenes,	the	subscriber	passes	this	information	on	to	roscore	and	tries
to	make	a	direct	connection	with	the	publishers	of	this	topic.	If	the	topic	does	not	exist,	or
if	the	type	is	wrong,	there	are	no	error	messages:	the	node	will	simply	wait	until	messages
start	being	published	on	the	topic.

Once	the	subscription	is	made,	we	give	control	over	to	ROS	by	calling	rospy.spin().
This	function	will	only	return	when	the	node	is	ready	to	shut	down.	This	is	just	a	useful
shortcut	to	avoid	having	to	define	a	top-level	while	loop	like	we	did	in	Example	3-1;	ROS
does	not	necessarily	need	to	“take	over”	the	main	thread	of	execution.



Checking	That	Everything	Works	as	Expected
First,	make	sure	that	the	publisher	node	is	still	running	and	that	it	is	still	publishing
messages	on	the	counter	topic.	Then,	in	another	terminal,	start	up	the	subscriber	node:

user@hostname$	rosrun	basics	topic_subscriber.py

355

356

357

358

359

360

It	should	start	to	print	out	integers	published	to	the	counter	topic	by	the	publisher	node.
Congratulations!	You’re	now	running	your	first	ROS	system:	Example	3-1	is	sending
messages	to	Example	3-2.	You	can	visualize	this	system	by	typing	rqt_graph,	which	will
attempt	to	draw	the	publishers	and	subscribers	in	a	logical	manner.

We	can	also	publish	messages	to	a	topic	from	the	command	line	using	rostopic	pub.	Run
the	following	command,	and	watch	the	output	of	the	subscriber	node:

user@hostname$	rostopic	pub	counter	std_msgs/Int32	1000000

We	can	use	rostopic	info	again	to	make	sure	things	are	the	way	we	expect	them	to	be:

user@hostname$	rostopic	info	counter

Type:	std_msgs/Int32

Publishers:

	*	/topic_publisher	(http://hostname:46674/)

Subscribers:

	*	/topic_subscriber	(http://hostname:53744/)

Now	that	you	understand	how	basic	topics	work,	we	can	talk	about	a	special	type	of	topics
designed	for	nodes	that	publish	data	only	infrequently,	called	latched	topics.



Latched	Topics
Messages	in	ROS	are	fleeting.	If	you’re	not	subscribed	to	a	topic	when	a	message	goes	out
on	it,	you’ll	miss	it	and	will	have	to	wait	for	the	next	one.	This	is	fine	if	the	publisher
sends	out	messages	frequently,	since	it	won’t	be	long	until	the	next	message	comes	along.
However,	there	are	cases	where	sending	out	frequent	messages	is	a	bad	idea.

For	example,	the	map_server	node	advertises	a	map	(of	type	nav_msgs/OccupancyGrid)
on	the	map	topic.	This	represents	a	map	of	the	world	that	the	robot	can	use	to	determine
where	it	is,	such	as	the	one	shown	in	Figure	3-1.	Often,	this	map	never	changes	and	is
published	only	once,	when	the	map_server	loads	it	from	disk.	However,	this	means	if
another	node	needs	the	map,	but	starts	up	after	map_server	publishes	it,	it	will	never	get
the	message.

Figure	3-1.	An	example	map

We	could	periodically	publish	the	map,	but	we	don’t	want	to	publish	the	message	more
often	than	we	have	to,	since	it’s	typically	huge.	If	we	did	decide	to	republish	it,	we	would
have	to	pick	a	suitable	frequency,	which	might	be	tricky	to	get	right.

Latched	topics	offer	a	simple	solution	to	this	problem.	If	a	topic	is	marked	as	latched	when
it	is	advertised,	subscribers	automatically	get	the	last	message	sent	when	they	subscribe	to
the	topic.	In	our	map_server	example,	this	means	that	we	only	need	to	mark	it	as	latched



and	publish	it	once.	Topics	can	be	marked	as	latched	with	the	optional	latched	argument:

pub	=	rospy.Publisher('map',	nav_msgs/OccupancyGrid,	latched=True)

Now	that	we	know	how	to	send	messages	over	topics,	it’s	time	to	think	about	what	to	do	if
we	want	to	send	a	message	that	isn’t	already	defined	by	ROS.



Defining	Your	Own	Message	Types
ROS	offers	a	rich	set	of	built-in	message	types.	The	std_msgs	package	defines	the
primitive	types,	shown	in	Table	3-1	and	documented	more	fully	on	the	ROS	wiki	msg
page.	Arrays	of	these	types,	both	fixed	and	variable	length,	are	returned	(from	the	lower-
level	communications	deserialization	code)	as	tuples	in	Python	and	can	be	set	as	either
tuples	or	lists.

Table	3-1.	ROS	primitive	message	types,	how	they	are	serialized,	and	their	corresponding
C	and	Python	types

ROS
type

Serialization C++	type Python
type

Notes

bool Unsigned	8-bit	integer uint8_t bool

int8 Signed	8-bit	integer int8_t int

uint8 Unsigned	8-bit	integer uint8_t int uint8[]	is	treated	as	a	string	in	Python

int16 Signed	16-bit	integer int16_t int

uint16 Unsigned	16-bit	integer uint16_t int

int32 Signed	32-bit	integer int32_t int

uint32 Unsigned	32-bit	integer uint32_t int

int64 Signed	64-bit	integer int64_t long

uint64 Unsigned	64-bit	integer uint64_t long

float32 32-bit	IEEE	float float float

float64 64-bit	IEEE	float double float

string ASCII	string std::string string ROS	does	not	support	Unicode	strings;	use	a	UTF-
8	encoding

time secs/nsecs	unsigned	32-bit
ints

ros::Time rospy.Time duration

http://wiki.ros.org/msg#Field_Types?distro=indigo


WARNING
C++	has	more	native	data	types	than	Python,	which	can	lead	to	subtle	problems	when	nodes	written	in	C++
and	Python	exchange	data.	For	example,	the	ROS	UInt8	is	represented	as	an	8-bit	unsigned	integer	in	C++
and	will	behave	normally.	However,	in	Python	it	is	represented	as	an	integer,	which	means	you	can	set	it
negative,	or	to	a	value	greater	than	255.	When	this	out-of-range	value	is	subsequently	published	as	a	ROS
message,	it	will	be	interpreted	as	an	8-bit	unsigned	value.	This	will	often	lead	to	an	unpredictable	value
being	received	and	a	hard-to-find	error.	Be	careful	when	using	range-limited	ROS	types	in	Python.

These	primitive	types	are	used	to	build	all	of	the	messages	used	in	ROS.	These	messages
are	contained	in	the	std_msgs	package	and	the	common_msgs	package.	These	message
types	are	part	of	what	gives	ROS	its	power.	Since	(most)	laser	range-finder	sensors
publish	sensor_msgs/LaserScan	messages,	we	can	write	control	code	for	our	robots
without	having	to	know	the	specific	details	of	the	laser	range-finder	hardware.
Furthermore,	most	robots	can	publish	their	estimated	locations	in	a	standard	way.	Using
standardized	message	types	for	laser	scans	and	location	estimates	enables	nodes	can	be
written	that	provide	navigation	and	mapping	(among	many	other	things)	for	a	wide	variety
of	robots.

However,	there	are	times	when	the	built-in	message	types	are	not	enough,	and	we	have	to
define	our	own	messages.	These	messages	are	“first-class	citizens”	in	ROS,	and	there	is
no	distinction	between	the	message	types	that	are	defined	in	the	core	of	ROS	and	those
you	define	yourself.

http://wiki.ros.org/std_msgs?distro=indigo
http://wiki.ros.org/common_msgs?distro=indigo


Defining	a	New	Message
ROS	messages	are	defined	by	special	message-definition	files	in	the	msg	directory	of	a
package.	These	files	are	then	compiled	into	language-specific	implementations	that	can	be
used	in	your	code.	This	means	that,	even	if	you’re	using	an	interpreted	language	such	as
Python,	you	need	to	run	catkin_make	if	you’re	going	to	define	your	own	message	types.
Otherwise,	the	language-specific	implementation	will	not	be	generated,	and	Python	will
not	be	able	to	find	your	new	message	type.	Furthermore,	if	you	don’t	rerun	catkin_make
after	you	change	the	message	definition,	Python	will	still	be	using	the	older	version	of	the
message	type.	Although	this	sounds	like	an	extra	layer	of	complexity,	there	is	a	good
reason	to	do	things	this	way:	it	allows	us	to	define	a	message	once	and	have	it
automatically	available	in	all	languages	that	ROS	supports,	without	having	to	manually
write	the	(extremely	tedious)	code	that	“deflates”	and	“inflates”	messages	as	they	come
across	the	network.

Message-definition	files	are	typically	quite	simple	and	short.	Each	line	specifies	a	type
and	a	field	name.	Types	can	be	built-in	ROS	primitive	types,	message	types	from	other
packages,	arrays	of	types	(either	primitive	or	from	other	packages,	and	either	fixed	or
variable	length),	or	the	special	Header	type.

NOTE
A	message-definition	file	comprises	a	list	of	types	that	make	up	the	message.	These	types	can	either	be	ones
that	are	built	into	ROS,	such	as	those	defined	in	the	std_msgs	package,	or	types	that	you	have	defined
yourself.

As	a	concrete	example,	suppose	we	wanted	to	modify	Example	3-1	to	publish	random
complex	numbers,	instead	of	integers.	A	complex	number	has	two	parts,	real	and
imaginary,	both	of	which	are	floating-point	numbers.	The	message-definition	file	for	our
new	type,	called	Complex,	is	shown	in	Example	3-3.

Example	3-3.	Complex.msg
float32	real

float32	imaginary

The	file	Complex.msg	is	in	the	msg	directory	of	the	basics	package.	It	defines	two	values,
real	and	imaginary,	both	with	the	same	type	(float32).2

Once	the	message	is	defined,	we	need	to	run	catkin_make	to	generate	the	language-
specific	code	that	will	let	us	use	it.	This	code	includes	a	definition	of	the	type,	and	code	to
marshal	and	unmarshal	it	for	transmission	down	a	topic.	This	allows	us	to	use	the	message
in	all	of	the	languages	that	ROS	supports;	nodes	written	in	one	language	can	subscribe	to
topics	from	nodes	written	in	another.	Moreover,	it	allows	us	to	use	messages	to
communicate	seamlessly	between	computers	with	different	architectures.

To	get	ROS	to	generate	the	language-specific	message	code,	we	need	to	make	sure	that	we
tell	the	build	system	about	the	new	message	definitions.	We	can	do	this	by	adding	these
lines	to	our	package.xml	file:



<build_depend>message_generation</build_depend>

<run_depend>message_runtime</run_depend>

Next,	we	need	to	make	a	few	changes	to	the	CMakeLists.txt	file.	First,	we	need	to	add
message_generation	to	the	end	of	the	find_package()	call	,	so	that	catkin	knows	to
look	for	the	message_generation	package:

find_package(catkin	REQUIRED	COMPONENTS

			roscpp

			rospy

			std_msgs

			message_generation			#	Add	message_generation	here,	after	the	other	packages

)

Then	we	need	to	tell	catkin	that	we’re	going	to	use	messages	at	runtime,	by	adding
message_runtime	to	the	catkin_package()	call:

catkin_package(

		CATKIN_DEPENDS	message_runtime			#	This	will	not	be	the	only	thing	here

)

We	tell	catkin	which	message	files	we	want	to	compile	by	adding	them	to	the
add_message_files()	call:

add_message_files(

		FILES

		Complex.msg

)

Finally,	still	in	the	CMakeLists.txt	file,	we	need	to	make	sure	the	generate_messages()
call	is	uncommented	and	contains	all	the	dependencies	that	are	needed	by	our	messages:

generate_messages(

		DEPENDENCIES

		std_msgs

)

Now	that	we’ve	told	catkin	everything	that	it	needs	to	know	about	our	messages,	we’re
ready	to	compile	them.	Go	to	the	root	of	your	catkin	workspace,	and	run	catkin_make.
This	will	generate	a	message	type	with	the	same	name	as	the	message-definition	file,	with
the	.msg	extension	removed.	By	convention,	ROS	types	are	capitalized	and	contain	no
underscores.

You’ll	probably	never	need	to	see	the	details	of	the	Python	class	that	catkin_make
generates	in	order	to	use	it	in	your	ROS	code.	However,	for	the	sake	of	completeness,
Example	3-4	shows	(parts	of)	the	class	generated	from	our	complex	number	example.

Example	3-4.	Part	of	the	Python	message	definition	generated	by	catkin_make	for	our
complex	number	example
"""autogenerated	by	genpy	from	basics/Complex.msg.	Do	not	edit."""

import	sys

python3	=	True	if	sys.hexversion	>	0x03000000	else	False

import	genpy



import	struct

class	Complex(genpy.Message):

		_md5sum	=	"54da470dccf15d60bd273ab751e1c0a1"

		_type	=	"basics/Complex"

		_has_header	=	False	#flag	to	mark	the	presence	of	a	Header	object

		_full_text	=	"""float32	real

float32	imaginary

"""

		__slots__	=	['real','imaginary']

		_slot_types	=	['float32','float32']

		def	__init__(self,	*args,	**kwds):

				"""

				Constructor.	Any	message	fields	that	are	implicitly/explicitly

				set	to	None	will	be	assigned	a	default	value.	The	recommend

				use	is	keyword	arguments	as	this	is	more	robust	to	future	message

				changes.		You	cannot	mix	in-order	arguments	and	keyword	arguments.

				The	available	fields	are:

							real,imaginary

				:param	args:	complete	set	of	field	values,	in	.msg	order

				:param	kwds:	use	keyword	arguments	corresponding	to	message	field	names

				to	set	specific	fields.

				"""

				if	args	or	kwds:

						super(Complex,	self).__init__(*args,	**kwds)

						#message	fields	cannot	be	None,	assign	default	values	for	those	that	are

						if	self.real	is	None:

								self.real	=	0.

						if	self.imaginary	is	None:

								self.imaginary	=	0.

				else:

						self.real	=	0.

						self.imaginary	=	0.

		def	_get_types(self):

				"""

				internal	API	method

				"""

				return	self._slot_types

		def	serialize(self,	buff):

				...

		def	deserialize(self,	str):

				...

		def	serialize_numpy(self,	buff,	numpy):

				...

		def	deserialize_numpy(self,	str,	numpy):

				...

The	important	thing	to	notice	here	is	that	you	can	provide	parameters	to	the	constructor	to
initialize	the	values	in	the	class.	You	can	do	this	in	two	ways.	You	can	give	values	for	each
of	the	elements	of	the	class	(real	and	imaginary	in	this	example),	in	the	order	that	they’re
listed	in	the	message-definition	file.	In	this	case,	you	need	to	give	values	for	all	of	the
fields.	Alternatively,	you	can	use	keyword	arguments	to	give	values	to	some	of	the	fields,
like	this:

c	=	Complex(real=2.3)

and	have	default	values	be	assigned	to	the	remaining	fields.



WARNING
Generated	message	definitions	contain	an	MD5	checksum.	This	is	used	by	ROS	to	make	sure	that	it’s	using
the	correct	version	of	a	message.	If	you	modify	your	message-definition	files	and	run	catkin_make	over
them,	you	might	also	have	to	run	catkin_make	over	any	code	that	uses	these	messages,	to	make	sure	that
the	checksums	match	up.	This	is	generally	more	of	a	problem	with	C++	than	with	Python,	since	the
checksums	are	compiled	into	the	executables.	However,	it	can	be	an	issue	with	Python	with	compiled	byte
code	(.pyc	files).



Using	Your	New	Message
Once	your	message	is	defined	and	compiled,	you	can	use	it	just	like	any	other	message	in
ROS,	as	you	can	see	in	Example	3-5.

Example	3-5.	message_publisher.py
#!/usr/bin/env	python

import	rospy

from	basics.msg	import	Complex

from	random	import	random

rospy.init_node('message_publisher')

pub	=	rospy.Publisher('complex',	Complex)

rate	=	rospy.Rate(2)

while	not	rospy.is_shutdown():

				msg	=	Complex()

				msg.real	=	random()

				msg.imaginary	=	random()

				pub.publish(msg)

				rate.sleep()

Importing	your	new	message	type	works	just	like	including	a	standard	ROS	message	type
and	allows	you	to	create	a	message	instance	just	like	any	other	Python	class.	Once	you’ve
created	the	instance,	you	can	fill	in	the	values	for	the	individual	fields.	Any	fields	that	are
not	explicitly	assigned	a	value	should	be	considered	to	have	an	undefined	value.

Subscribing	to	and	using	your	new	message	is	similarly	easy,	as	Example	3-6
demonstrates.

Example	3-6.	message_subscriber.py
#!/usr/bin/env	python

import	rospy

from	basics.msg	import	Complex

def	callback(msg):

				print	'Real:',	msg.real

				print	'Imaginary:',	msg.imaginary

				print

rospy.init_node('message_subscriber')

sub	=	rospy.Subscriber('complex',	Complex,	callback)

rospy.spin()

The	rosmsg	command	lets	you	look	at	the	contents	of	a	message	type:

user@hostname$	rosmsg	show	Complex

[basics/Complex]:

float32	real

float32	imaginary

If	a	message	contains	other	messages,	they	are	displayed	recursively	by	rosmsg.	For



example,	PointStamped	has	a	Header	and	a	Point,	each	of	which	is	a	ROS	type:

user@hostname$	rosmsg	show	PointStamped

[geometry_msgs/PointStamped]:

std_msgs/Header	header

		uint32	seq

		time	stamp

		string	frame_id

geometry_msgs/Point	point

		float64	x

		float64	y

		float64	z

rosmsg	list	will	show	all	of	the	messages	available	in	ROS.	rosmsg	packages	will	list
all	of	the	packages	that	define	messages.	Finally,	rosmsg	package	will	list	the	messages
defined	in	a	particular	package:

user@hostname$	rosmsg	package	basics

basics/Complex

user@hostname$	rosmsg	package	sensor_msgs

sensor_msgs/CameraInfo

sensor_msgs/ChannelFloat32

sensor_msgs/CompressedImage

sensor_msgs/FluidPressure

sensor_msgs/Illuminance

sensor_msgs/Image

sensor_msgs/Imu

sensor_msgs/JointState

sensor_msgs/Joy

sensor_msgs/JoyFeedback

sensor_msgs/JoyFeedbackArray

sensor_msgs/LaserEcho

sensor_msgs/LaserScan

sensor_msgs/MagneticField

sensor_msgs/MultiEchoLaserScan

sensor_msgs/NavSatFix

sensor_msgs/NavSatStatus

sensor_msgs/PointCloud

sensor_msgs/PointCloud2

sensor_msgs/PointField

sensor_msgs/Range

sensor_msgs/RegionOfInterest

sensor_msgs/RelativeHumidity

sensor_msgs/Temperature

sensor_msgs/TimeReference



When	Should	You	Make	a	New	Message	Type?
The	short	answer	is,	“Only	when	you	absolutely	have	to.”	ROS	already	has	a	rich	set	of
message	types,	and	you	should	use	one	of	these	if	you	can.	Part	of	the	power	of	ROS	is	the
ability	to	combine	nodes	together	to	form	complex	systems,	and	this	can	only	happen	if
nodes	publish	and	receive	messages	of	the	same	type.	So,	before	you	go	and	create	a	new
message	type,	you	should	use	rosmsg	to	see	if	there	is	already	something	there	that	you
can	use	instead.	ROS	messages	define	the	public	interface	between	nodes.	Nodes	that	use
the	same	messages	can	easily	be	combined	into	a	running	system.	However,	if	every	node
uses	a	different	message	for	similar	data,	then	you’ll	have	to	do	a	lot	of	(pointless)	work
translating	between	these	messages	in	order	to	get	something	working.	You	should	prefer
existing	message	types	whenever	you	can,	since	this	will	make	your	code	fit	in	more
seamlessly	with	the	existing	ROS	code	base.	Similarly,	you	should	use	SI	units	(meters,
kilograms,	seconds,	etc.)	whenever	possible,	since	this	is	what	the	rest	of	ROS	uses.



Mixing	Publishers	and	Subscribers
The	previous	examples	showed	nodes	that	have	a	single	publisher	and	a	single	subscriber,
but	there’s	no	reason	why	a	node	can’t	be	both	a	publisher	and	a	subscriber	or	have
multiple	publications	and	subscriptions.	In	fact,	one	of	the	most	common	things	nodes	in
ROS	do	is	to	transform	data	by	performing	computations	on	it.	For	example,	a	node	might
subscribe	to	a	topic	containing	camera	images,	identify	faces	in	those	images,	and	publish
the	positions	of	those	faces	in	another	topic.	Example	3-7	shows	an	example	of	a	node	like
this.

Example	3-7.	doubler.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	Int32

rospy.init_node('doubler')

def	callback(msg):

				doubled	=	Int32()

				doubled.data	=	msg.data	*	2

				pub.publish(doubled)

sub	=	rospy.Subscriber('number',	Int32,	callback)

pub	=	rospy.Publisher('doubled',	Int32)

rospy.spin()

The	subscriber	and	publisher	are	set	up	as	before,	but	now	we’re	going	to	publish	data	in
the	callback,	rather	than	periodically.	The	idea	behind	this	is	that	we	only	want	to	publish
when	we	have	new	data	coming	in,	since	the	purpose	of	this	node	is	to	transform	data	(in
this	case,	by	doubling	the	number	that	comes	in	on	the	subscribed	topic).



Summary
In	this	chapter,	we	covered	topics,	the	fundamental	ROS	communication	mechanism.	You
should	now	know	how	to	advertise	a	topic	and	publish	messages	over	it,	how	to	subscribe
to	a	topic	and	receive	messages	from	it,	how	to	define	your	own	messages,	and	how	to
write	simple	nodes	that	interact	with	topics.	You	should	also	know	how	to	write	nodes	that
transform	data	that	comes	in	on	one	topic	and	republish	it	on	another.	This	sort	of	node	is
the	backbone	in	many	ROS	systems,	performing	computations	to	transform	one	sort	of
data	into	another,	and	we’ll	be	seeing	examples	of	this	throughout	the	book.

Topics	are	probably	the	communication	mechanism	that	you	will	use	most	often	in	ROS.
Whenever	you	have	a	node	that	generates	data	that	other	nodes	can	use,	you	should
consider	using	a	topic	to	publish	that	data.	Whenever	you	need	to	transform	data	from	one
form	to	another,	a	node	like	the	one	shown	in	Example	3-7	is	often	a	good	choice.

While	we	covered	most	of	what	you	can	do	with	topics	in	this	chapter,	we	didn’t	cover
everything.	For	further	details,	you	should	look	at	the	topic’s	API	documentation.

Now	that	you’ve	got	the	hang	of	topics,	it’s	time	to	talk	about	the	second	main
communication	mechanism	in	ROS:	services.
1	Don’t	worry	if	you	don’t	know	what	a	TCP	port	is.	ROS	will	generally	take	care	of	this
for	you	without	you	having	to	think	about	it.
2	The	two	primitive	floating-point	types,	float32	and	float64,	both	map	to	the	Python
float	type.

http://wiki.ros.org/Topics?distro=indigo




Chapter	4.	Services

Services	are	another	way	to	pass	data	between	nodes	in	ROS.	Services	are	just
synchronous	remote	procedure	calls;	they	allow	one	node	to	call	a	function	that	executes
in	another	node.	We	define	the	inputs	and	outputs	of	this	function	similarly	to	the	way	we
define	new	message	types.	The	server	(which	provides	the	service)	specifies	a	callback	to
deal	with	the	service	request,	and	advertises	the	service.	The	client	(which	calls	the
service)	then	accesses	this	service	through	a	local	proxy.

Service	calls	are	well	suited	to	things	that	you	only	need	to	do	occasionally	and	that	take	a
bounded	amount	of	time	to	complete.	Common	computations,	which	you	might	want	to
distribute	to	other	computers,	are	a	good	example.	Discrete	actions	that	the	robot	might
do,	such	as	turning	on	a	sensor	or	taking	a	high-resolution	picture	with	a	camera,	are	also
good	candidates	for	a	service-call	implementation.

Although	there	are	several	services	already	defined	by	packages	in	ROS,	we’ll	start	by
looking	at	how	to	define	and	implement	our	own	service,	since	this	gives	some	insight
into	the	underlying	mechanisms	of	service	calls.	As	a	concrete	example	in	this	chapter,
we’re	going	to	show	how	to	create	a	service	that	counts	the	number	of	words	in	a	string.



Defining	a	Service
The	first	step	in	creating	a	new	service	is	to	define	the	service	call	inputs	and	outputs.	This
is	done	in	a	service-definition	file,	which	has	a	similar	structure	to	the	message-definition
files	we’ve	already	seen.	However,	since	a	service	call	has	both	inputs	and	outputs,	it’s	a
bit	more	complicated	than	a	message.

Our	example	service	counts	the	number	of	words	in	a	string.	This	means	that	the	input	to
the	service	call	should	be	a	string	and	the	output	should	be	an	integer.	Although	we’re
using	messages	from	std_msgs	here,	you	can	use	any	ROS	message,	even	ones	that	you’ve
defined	yourself.	Example	4-1	shows	a	service	definition	for	this.

Example	4-1.	WordCount.srv
string	words

---

uint32	count

NOTE
Like	message-definition	files,	service-definition	files	are	just	lists	of	message	types.	These	can	be	built	in,
such	as	those	defined	in	the	std_msgs	package,	or	they	can	be	ones	you	have	defined	yourself.

The	inputs	to	the	service	call	come	first.	In	this	case,	we’re	just	going	to	use	the	ROS
built-in	string	type.	Three	dashes	(---)	mark	the	end	of	the	inputs	and	the	start	of	the
output	definition.	We’re	going	to	use	a	32-bit	unsigned	integer	(uint32)	for	our	output.
The	file	holding	this	definition	is	called	WordCount.srv	and	is	traditionally	in	a	directory
called	srv	in	the	main	package	directory	(although	this	is	not	strictly	required).

Once	we’ve	got	the	definition	file	in	the	right	place,	we	need	to	run	catkin_make	to	create
the	code	and	class	definitions	that	we	will	actually	use	when	interacting	with	the	service,
just	like	we	did	for	new	messages.	To	get	catkin_make	to	generate	this	code,	we	need	to
make	sure	that	the	find_package()	call	in	CMakeLists.txt	contains	message_generation,
just	like	we	did	for	new	messages:

find_package(catkin	REQUIRED	COMPONENTS

			roscpp

			rospy

			message_generation			#	Add	message_generation	here,	after	the	other	packages

)

We	also	have	to	make	an	addition	to	the	package.xml	file	to	reflect	the	dependencies	on
both	rospy	and	the	message	system.	This	means	we	need	a	build	dependency	on
message_generation	and	a	runtime	dependency	on	message_runtime:

<build_depend>rospy</build_depend>

<run_depend>rospy</run_depend>

<build_depend>message_generation</build_depend>

<run_depend>message_runtime</run_depend>

Then,	we	need	to	tell	catkin	which	service-definition	files	we	want	compiled,	using	the



add_service_files()	call	in	CMakeLists.txt:

add_service_files(

		FILES

		WordCount.srv

)

Finally,	we	must	make	sure	that	the	dependencies	for	the	service-definition	file	are
declared	(again	in	CMakeLists.txt),	using	the	generate_messages()	call:

generate_messages(

		DEPENDENCIES

		std_msgs

)

With	all	of	this	in	place,	running	catkin_make	will	generate	three	classes:	WordCount,
WordCountRequest,	and	WordCountResponse.	These	classes	will	be	used	to	interact	with
the	service,	as	we	will	see.	Just	like	with	messages,	you	will	probably	never	have	to	look
at	the	details	of	the	generated	classes.	However,	just	in	case	you’re	interested,	(part	of)	the
classes	generated	by	the	WordCount	example	are	shown	in	Example	4-2.

Example	4-2.	The	Python	classes	generated	by	catkin_make	for	the	WordCount	example
(code	in	functions	removed	for	clarity)
"""autogenerated	by	genpy	from	basics/WordCountRequest.msg.	Do	not	edit."""

import	sys

python3	=	True	if	sys.hexversion	>	0x03000000	else	False

import	genpy

import	struct

class	WordCountRequest(genpy.Message):

		_md5sum	=	"6f897d3845272d18053a750c1cfb862a"

		_type	=	"basics/WordCountRequest"

		_has_header	=	False	#flag	to	mark	the	presence	of	a	Header	object

		_full_text	=	"""string	words

"""

		__slots__	=	['words']

		_slot_types	=	['string']

		def	__init__(self,	*args,	**kwds):

				"""

				Constructor.	Any	message	fields	that	are	implicitly/explicitly

				set	to	None	will	be	assigned	a	default	value.	The	recommend

				use	is	keyword	arguments	as	this	is	more	robust	to	future	message

				changes.		You	cannot	mix	in-order	arguments	and	keyword	arguments.

				The	available	fields	are:

							words

				:param	args:	complete	set	of	field	values,	in	.msg	order

				:param	kwds:	use	keyword	arguments	corresponding	to	message	field	names

				to	set	specific	fields.

				"""

				if	args	or	kwds:

						super(WordCountRequest,	self).__init__(*args,	**kwds)

						#message	fields	cannot	be	None,	assign	default	values	for	those	that	are

						if	self.words	is	None:

								self.words	=	''

				else:

						self.words	=	''

		def	_get_types(self):

				...				"""



		def	serialize(self,	buff):

				...

		def	deserialize(self,	str):

				...

		def	serialize_numpy(self,	buff,	numpy):

				...

		def	deserialize_numpy(self,	str,	numpy):

				...

class	WordCountResponse(genpy.Message):

		...

class	WordCount(genpy.Message):

		...

The	details	of	the	definitions	for	WordCountResponse	and	WordCount	are	similar	to	those
for	WordCountRequest.	All	of	these	are	just	ROS	messages.

We	can	verify	that	the	service	call	definition	is	what	we	expect	by	using	the	rossrv
command:

user@hostname$	rossrv	show	WordCount

[basics/WordCount]:

string	words

---

uint32	count

You	can	see	all	available	services	using	rossrv	list,	all	packages	offering	services	with
rossrv	packages,	and	all	the	services	offered	by	a	particular	package	with	rossrv
package.



Implementing	a	Service
Now	that	we	have	a	definition	of	the	inputs	and	outputs	for	the	service	call,	we’re	ready	to
write	the	code	that	implements	the	service.	Like	topics,	services	are	a	callback-based
mechanism.	The	service	provider	specifies	a	callback	that	will	be	run	when	the	service	call
is	made,	and	then	waits	for	requests	to	come	in.	Example	4-3	shows	a	simple	server	that
implements	our	word-counting	service	call.

Example	4-3.	service_server.py
#!/usr/bin/env	python

import	rospy

from	basics.srv	import	WordCount,WordCountResponse

def	count_words(request):

				return	WordCountResponse(len(request.words.split()))

rospy.init_node('service_server')

service	=	rospy.Service('word_count',	WordCount,	count_words)

rospy.spin()

We	first	need	to	import	the	code	generated	by	catkin:

from	basics.srv	import	WordCount,WordCountResponse

Notice	that	we	need	to	import	both	WordCount	and	WordCountResponse.	Both	of	these	are
generated	in	a	Python	module	with	the	same	name	as	the	package,	with	a	.srv	extension
(basics.srv,	in	our	case).

The	callback	function	takes	a	single	argument	of	type	WordCountRequest	and	returns	a
single	argument	of	type	WordCountResponse:

def	count_words(request):

				return	WordCountResponse(len(request.words.split()))

The	constructor	for	WordCountResponse	takes	parameters	that	match	those	in	the	service-
definition	file.	For	us,	this	means	an	unsigned	integer.	By	convention,	services	that	fail,	for
whatever	reason,	should	return	None.

After	initializing	the	node,	we	advertise	the	service,	giving	it	a	name	(word_count)	and	a
type	(WordCount),	and	specifying	the	callback	that	will	implement	it:

service	=	rospy.Service('word_count',	WordCount,	count_words)

Finally,	we	make	a	call	to	rospy.spin(),	which	gives	control	of	the	node	over	to	ROS	and
exits	when	the	node	is	ready	to	shut	down.	You	don’t	actually	have	to	hand	control	over
by	calling	rospy.spin()	(unlike	in	the	C++	API),	since	callbacks	run	in	their	own
threads.	You	could	set	up	your	own	loop,	remembering	to	check	for	node	termination,	if



you	have	something	else	you	need	to	do.	However,	using	rospy.spin()	is	a	convenient
way	to	keep	the	node	alive	until	it’s	ready	to	shut	down.



Checking	That	Everything	Works	as	Expected
Now	that	we	have	the	service	defined	and	implemented,	we	can	verify	that	everything	is
working	as	expected	with	the	rosservice	command.	Start	up	a	roscore	and	run	the
service	node:

user@hostname$	rosrun	basics	service_server.py

First,	let’s	check	that	the	service	is	there:

user@hostname$	rosservice	list

/rosout/get_loggers

/rosout/set_logger_level

/service_server/get_loggers

/service_server/set_logger_level

/word_count

In	addition	to	the	logging	services	provided	by	ROS,	our	service	seems	to	be	there.	We
can	get	some	more	information	about	it	with	rosservice	info:

user@hostname$	rosservice	info	word_count

Node:	/service_server

URI:	rosrpc://hostname:60085

Type:	basics/WordCount

Args:	words

This	tells	us	the	node	that	provides	the	service,	where	it’s	running,	the	type	that	it	uses,
and	the	names	of	the	arguments	to	the	service	call.	We	can	also	get	some	of	this
information	using	rosservice	type	word_count	and	roservice	args	word_count.



Other	Ways	of	Returning	Values	from	a	Service
In	the	previous	example,	we	explicitly	created	a	WordCountResponse	object	and	returned	it
from	the	service	callback.	There	are	a	number	of	other	ways	to	return	values	from	a
service	callback	that	you	can	use.	In	the	case	where	there	is	a	single	return	argument	for
the	service,	you	can	simply	return	that	value:

def	count_words(request):

				return	len(request.words.split())

If	there	are	multiple	return	arguments,	you	can	return	a	tuple	or	a	list.	The	values	in	the	list
will	be	assigned	to	the	values	in	the	service	definition,	in	order.	This	works	even	if	there’s
only	one	return	value:

def	count_words(request):

				return	[len(request.words.split())]

You	can	also	return	a	dictionary,	where	the	keys	are	the	argument	names	(given	as	strings):

def	count_words(request):

				return	{'count':	len(request.words.split())}

In	both	of	these	cases,	the	underlying	service	call	code	in	ROS	will	translate	these	return
types	into	a	WordCountResponse	object	and	return	it	to	the	calling	node,	just	as	in	the
initial	example	code.



Using	a	Service
The	simplest	way	to	use	a	service	is	to	call	it	using	the	rosservice	command.	For	our
word-counting	service,	the	call	looks	like	this:

user@hostname$	rosservice	call	word_count	'one	two	three'

count:	3

The	command	takes	the	call	subcommand,	the	service	name,	and	the	arguments.	While
this	lets	us	call	the	service	and	make	sure	that	it’s	working	as	expected,	it’s	not	as	useful	as
calling	it	from	another	running	node.	Example	4-4	shows	how	to	call	our	service
programmatically.

Example	4-4.	service_client.py
#!/usr/bin/env	python

import	rospy

from	basics.srv	import	WordCount

import	sys

rospy.init_node('service_client')

rospy.wait_for_service('word_count')

word_counter	=	rospy.ServiceProxy('word_count',	WordCount)

words	=	'	'.join(sys.argv[1:])

word_count	=	word_counter(words)

print	words,	'->',	word_count.count

First,	we	wait	for	the	service	to	be	advertised	by	the	server:

rospy.wait_for_service('word_count')

If	we	try	to	use	the	service	before	it’s	advertised,	the	call	will	fail	with	an	exception.	This
is	a	major	difference	between	topics	and	services.	We	can	subscribe	to	topics	that	are	not
yet	advertised,	but	we	can	only	use	advertised	services.	Once	the	service	is	advertised,	we
can	set	up	a	local	proxy	for	it:

word_counter	=	rospy.ServiceProxy('word_count',	WordCount)

We	need	to	specify	the	name	of	the	service	(word_count)	and	the	type	(WordCount).	This
will	allow	us	to	use	word_counter	like	a	local	function	that,	when	called,	will	actually
make	the	service	call	for	us:

word_count	=	word_counter(words)



Checking	That	Everything	Works	as	Expected
Now	that	we’ve	defined	the	service,	built	the	support	code	with	catkin,	and	implemented
both	a	server	and	a	client,	it’s	time	to	see	if	everything	works.	Check	that	your	server	is
still	running,	and	run	the	client	node	(make	sure	that	you’ve	sourced	your	workspace	setup
file	in	the	shell	in	which	you	run	the	client	node,	or	it	will	not	work):

user@hostname$	rosrun	basics	service_client.py	these	are	some	words

these	are	some	words	->	4

Now,	stop	the	server	and	rerun	the	client	node.	It	should	stop,	waiting	for	the	service	to	be
advertised.	Starting	the	server	node	should	result	in	the	client	completing	normally,	once
the	service	is	available.	This	highlights	one	of	the	limitations	of	ROS	services:	the	service
client	can	potentially	wait	forever	if	the	service	is	not	available	for	some	reason.	Perhaps
the	service	server	has	died	unexpectedly,	or	perhaps	the	service	name	is	misspelled	in	the
client	call.	In	either	case,	the	service	client	will	get	stuck.



Other	Ways	to	Call	Services
In	our	client	node,	we	are	calling	the	service	through	the	proxy	as	if	it	were	a	local
function.	The	arguments	to	this	function	are	used	to	fill	in	the	elements	of	the	service
request,	in	order.	In	our	example,	we	only	have	one	argument	(words),	so	we	are	only
allowed	to	give	the	proxy	function	one	argument.	Similarly,	since	there	is	only	one	output
from	the	service	call,	the	proxy	function	returns	a	single	value.	If,	on	the	other	hand,	our
service	definition	were	to	look	like	this:

string	words

int	min_word_length

---

uint32	count

uint32	ignored

then	the	proxy	function	would	take	two	arguments,	and	return	two	values:

c,i	=	word_count(words,	3)

The	arguments	are	passed	in	the	order	they	are	defined	in	the	service	definition.	It	is	also
possible	to	explicitly	construct	a	service	request	object	and	use	that	to	call	the	service:

request	=	WordCountRequest('one	two	three',	3)

count,ignored	=	word_counter(request)

Note	that,	if	you	choose	this	mechanism,	you	will	have	to	also	import	the	definition	for
WordCountRequest	in	the	client	code,	as	follows:

from	basics.srv	import	WordCountRequest

Finally,	if	you	only	want	to	set	some	of	the	arguments,	you	can	use	keyword	arguments	to
make	the	service	call:

count,ignored	=	word_counter(words='one	two	three')

While	this	mechanism	can	be	useful,	you	should	use	it	with	care,	since	any	arguments	that
you	do	not	explicitly	set	will	remain	undefined.	If	you	omit	arguments	that	the	service
needs	to	run,	you	might	get	strange	return	values.	You	should	probably	steer	clear	of	this
calling	style,	unless	you	actually	need	to	use	it.



Summary
Now	you	know	all	about	services,	the	second	main	communication	mechanism	in	ROS.
Services	are	really	just	synchronous	remote	procedure	calls	and	allow	explicit	two-way
communication	between	nodes.	You	should	now	be	able	to	use	services	provided	by	other
packages	in	ROS,	and	also	to	implement	your	own	services.

Once	again,	we	didn’t	cover	all	of	the	details	of	services.	To	get	more	information	on	more
sophisticated	uses	of	services,	you	should	look	at	the	services	API	documentation.

You	should	use	services	for	things	that	you	only	need	to	do	occasionally,	or	when	you
need	a	synchronous	reply.	The	computations	in	a	service	callback	should	take	a	short,
bounded	amount	of	time	to	complete.	If	they’re	going	to	take	a	long	time,	or	the	time	is
going	to	be	highly	variable,	you	should	think	about	using	an	action,	which	we	describe	in
the	next	chapter.

http://wiki.ros.org/Services?distro=indigo




Chapter	5.	Actions

The	previous	chapter	described	ROS	services,	which	are	useful	for	synchronous
request/response	interactions	—	that	is,	for	those	cases	where	asynchronous	ROS	topics
don’t	seem	like	the	best	fit.	However,	services	aren’t	always	the	best	fit,	either,	in
particular	when	the	request	that’s	being	made	is	more	than	a	simple	instruction	of	the	form
“get	(or	set)	the	value	of	X.”

While	services	are	handy	for	simple	get/set	interactions	like	querying	status	and	managing
configuration,	they	don’t	work	well	when	you	need	to	initiate	a	long-running	task.	For
example,	imagine	commanding	a	robot	to	drive	to	some	distant	location;	call	it
goto_position.	The	robot	will	require	significant	time	(seconds,	minutes,	perhaps	longer)
to	do	so,	with	the	exact	amount	of	time	impossible	to	know	in	advance,	since	obstacles
may	arise	that	result	in	a	longer	path.

Imagine	what	a	service	interface	to	goto_position	might	look	like	to	the	caller:	you	send
a	request	containing	the	goal	location,	then	you	wait	for	an	indeterminate	amount	of	time
to	receive	the	response	that	tells	you	what	happened.	While	waiting,	your	calling	program
is	forced	to	block,	you	have	no	information	about	the	robot’s	progress	toward	the	goal,	and
you	can’t	cancel	or	change	the	goal.	To	address	these	shortcomings,	ROS	provides
actions.

ROS	actions	are	the	best	way	to	implement	interfaces	to	time-extended,	goal-oriented
behaviors	like	goto_position.	While	services	are	synchronous,	actions	are	asynchronous.
Similar	to	the	request	and	response	of	a	service,	an	action	uses	a	goal	to	initiate	a	behavior
and	sends	a	result	when	the	behavior	is	complete.	But	the	action	further	uses	feedback	to
provide	updates	on	the	behavior’s	progress	toward	the	goal	and	also	allows	for	goals	to	be
canceled.	Actions	are	themselves	implemented	using	topics.	An	action	is	essentially	a
higher-level	protocol	that	specifies	how	a	set	of	topics	(goal,	result,	feedback,	etc.)	should
be	used	in	combination.

Using	an	action	interface	to	goto_position,	you	send	a	goal,	then	move	on	to	other	tasks
while	the	robot	is	driving.	Along	the	way,	you	receive	periodic	progress	updates	(distance
traveled,	estimated	time	to	goal,	etc.),	culminating	in	a	result	message	(did	the	robot	make
it	to	the	goal	or	was	it	forced	to	give	up?).	And	if	something	more	important	comes	up,
you	can	at	any	time	cancel	the	goal	and	send	the	robot	somewhere	else.

Actions	require	only	a	little	more	effort	to	define	and	use	than	do	services,	and	they
provide	a	lot	more	power	and	flexibility.	Let’s	see	how	they	work.



Defining	an	Action
The	first	step	in	creating	a	new	action	is	to	define	the	goal,	result,	and	feedback	message
formats	in	an	action	definition	file,	which	by	convention	has	the	suffix	.action.	The	.action
file	format	is	similar	to	the	.srv	format	used	to	define	services,	just	with	an	additional
field.	And,	as	with	services,	each	field	within	an	.action	file	will	become	its	own	message.

As	a	simple	example,	let’s	define	an	action	that	acts	like	a	timer	(we’ll	come	back	to	the
more	useful	goto_position	behavior	in	Chapter	10).	We	want	this	timer	to	count	down,
signaling	us	when	the	specified	time	has	elapsed.	Along	the	way,	it	should	tell	us
periodically	how	much	time	is	left.	When	it’s	done,	it	should	tell	us	how	much	time
actually	elapsed.

NOTE
We’re	building	a	timer	because	it’s	a	simple	example	of	an	action.	In	a	real	robot	system,	you	would	use	the
time	support	that	is	built	into	ROS	client	libraries,	such	as	rospy.sleep().

Shown	in	Example	5-1	is	an	action	definition	that	will	satisfy	these	requirements.

Example	5-1.	Timer.action
#	This	is	an	action	definition	file,	which	has	three	parts:	the	goal,	the

#	result,	and	the	feedback.

#

#	Part	1:	the	goal,	to	be	sent	by	the	client

#

#	The	amount	of	time	we	want	to	wait

duration	time_to_wait

---

#	Part	2:	the	result,	to	be	sent	by	the	server	upon	completion

#

#	How	much	time	we	waited

duration	time_elapsed

#	How	many	updates	we	provided	along	the	way

uint32	updates_sent

---

#	Part	3:	the	feedback,	to	be	sent	periodically	by	the	server	during

#	execution.

#

#	The	amount	of	time	that	has	elapsed	from	the	start

duration	time_elapsed

#	The	amount	of	time	remaining	until	we're	done

duration	time_remaining

Just	like	with	service-definition	files,	we	use	three	dashes	(---)	as	the	separator	between
the	parts	of	the	definition.	While	service	definitions	have	two	parts	(request	and	response),
action	definitions	have	three	parts	(goal,	result,	and	feedback).

The	action	file	Timer.action	should	be	placed	in	a	directory	called	action	within	a	ROS
package.	As	with	our	previous	examples,	this	file	is	already	present	in	the	basics
package.

With	the	definition	file	in	the	right	place,	we	need	to	run	catkin_make	to	create	the	code
and	class	definitions	that	we	will	actually	use	when	interacting	with	the	action,	just	like
we	did	for	new	services.	To	get	catkin_make	to	generate	this	code,	we	need	to	add	some
lines	to	the	CMakeLists.txt	file.	First,	add	actionlib_msgs	to	the	()	call	(in	addition	to
any	other	packages	that	are	already	there):



find_package(catkin	REQUIRED	COMPONENTS

		#	other	packages	are	already	listed	here

		actionlib_msgs

)

Then,	use	the	add_action_files()	call	to	tell	catkin	about	the	action	files	you	want	to
compile:

add_action_files(

		DIRECTORY	action

		FILES	Timer.action

)

Make	sure	you	list	the	dependencies	for	your	actions.	You	also	need	to	explicitly	list
actionlib_msgs	as	a	dependency	in	order	for	actions	to	compile	properly:

generate_messages(

		DEPENDENCIES

		actionlib_msgs

		std_msgs

)

Finally,	add	actionlib_msgs	as	a	dependency	for	catkin:

catkin_package(

		CATKIN_DEPENDS

		actionlib_msgs

)

With	all	of	this	information	in	place,	running	catkin_make	in	the	top	level	of	our	catkin
workspace	does	quite	a	bit	of	extra	work	for	us.	Our	Timer.action	file	is	processed	to
produce	several	message-definition	files:	TimerAction.msg,	TimerActionFeedback.msg,
TimerActionGoal.msg,	TimerActionResult.msg,	TimerFeedback.msg,	TimerGoal.msg,	and
TimerResult.msg.	These	messages	are	used	to	implement	the	action	client/server	protocol,
which,	as	mentioned	previously,	is	built	on	top	of	ROS	topics.	The	generated	message
definitions	are	in	turn	processed	by	the	message	generator	to	produce	corresponding	class
definitions.	Most	of	the	time,	you’ll	use	only	a	few	of	those	classes,	as	you’ll	see	in	the
following	examples.



Implementing	a	Basic	Action	Server
Now	that	we	have	a	definition	of	the	goal,	result,	and	feedback	for	the	timer	action,	we’re
ready	to	write	the	code	that	implements	it.	Like	topics	and	services,	actions	are	a	callback-
based	mechanism,	with	your	code	being	invoked	as	a	result	of	receiving	messages	from
another	node.

The	easiest	way	to	build	an	action	server	is	to	use	the	SimpleActionServer	class	from	the
actionlib	package.	We’ll	start	by	defining	only	the	callback	that	will	be	invoked	when	a
new	goal	is	sent	by	an	action	client.	In	that	callback,	we’ll	do	the	work	of	the	timer,	then
return	a	result	when	we’re	done.	We’ll	add	feedback	reporting	in	the	next	step.	Example	5-
2	shows	the	code	for	our	first	action	server.

Example	5-2.	simple_action_server.py
#!	/usr/bin/env	python

import	rospy

import	time

import	actionlib

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult

def	do_timer(goal):

				start_time	=	time.time()

				time.sleep(goal.time_to_wait.to_sec())

				result	=	TimerResult()

				result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

				result.updates_sent	=	0

				server.set_succeeded(result)

rospy.init_node('timer_action_server')

server	=	actionlib.SimpleActionServer('timer',	TimerAction,	do_timer,	False)

server.start()

rospy.spin()

Let’s	step	through	the	key	parts	of	the	code.	First	we	import	the	standard	Python	time
package,	which	we’ll	use	for	the	timer	functionality	of	our	server.	We	also	import	the	ROS
actionlib	package	that	provides	the	SimpleActionServer	class	that	we’ll	be	using.
Finally,	we	import	some	of	the	message	classes	that	were	autogenerated	from	our
Timer.action	file:

import	time

import	actionlib

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult

Next,	we	define	do_timer(),	the	function	that	will	be	invoked	when	we	receive	a	new
goal.	In	this	function,	we	handle	the	new	goal	in-place	and	set	a	result	before	returning.
The	type	of	the	goal	argument	that	is	passed	to	do_timer()	is	TimerGoal,	which
corresponds	to	the	goal	part	of	Timer.action.	We	save	the	current	time,	using	the	standard
Python	time.time()	function,	then	sleep	for	the	time	requested	in	the	goal,	converting	the
time_to_wait	field	from	a	ROS	duration	to	seconds:

def	do_timer(goal):

				start_time	=	time.time()

				time.sleep(goal.time_to_wait.to_sec())



The	next	step	is	to	build	up	the	result	message,	which	will	be	of	type	TimerResult;	this
corresponds	to	the	result	part	of	Timer.action.	We	fill	in	the	time_elapsed	field	by
subtracting	our	saved	start	time	from	the	current	time,	and	converting	the	result	to	a	ROS
duration.	We	set	updates_sent	to	zero,	because	we	didn’t	send	any	updates	along	the	way
(we’ll	add	that	part	shortly):

				result	=	TimerResult()

				result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

				result.updates_sent	=	0

Our	final	step	in	the	callback	is	to	tell	the	SimpleActionServer	that	we	successfully
achieved	the	goal	by	calling	set_succeeded()	and	passing	it	the	result.	For	this	simple
server,	we	always	succeed;	we’ll	address	failure	cases	later	in	this	chapter:

				server.set_succeeded(result)

Back	in	the	global	scope,	we	initialize	and	name	our	node	as	usual,	then	create	a
SimpleActionServer.	The	first	constructor	argument	for	SimpleActionServer	is	the
server’s	name,	which	will	determine	the	namespace	into	which	its	constituent	topics	will
be	advertised;	we’ll	use	timer.	The	second	argument	is	the	type	of	the	action	that	the
server	will	be	handling,	which	in	our	case	is	TimerAction.	The	third	argument	is	the	goal
callback,	which	is	the	function	do_timer()	that	we	defined	earlier.	Finally,	we	pass	False
to	disable	autostarting	the	server.	Having	created	the	action	server,	we	explicitly	start()
it,	then	go	into	the	usual	ROS	spin()	loop	to	wait	for	goals	to	arrive:

rospy.init_node('timer_action_server')

server	=	actionlib.SimpleActionServer('timer',	TimerAction,	do_timer,	False)

server.start()

rospy.spin()

CAUTION
Autostarting	should	always	be	disabled	on	action	servers,	because	it	can	allow	a	race	condition	that	leads	to
puzzling	bugs.	It	was	an	oversight	in	the	implementation	of	actionlib	to	make	autostarting	the	default,	but
by	the	time	the	problem	was	discovered,	there	was	too	much	existing	code	that	relied	on	that	default
behavior	to	change	it.



Checking	That	Everything	Works	as	Expected
Now	that	we	have	implemented	the	action	server,	we	can	do	a	couple	of	checks	to	ensure
that	it’s	working	as	expected.	Start	up	a	roscore	and	then	run	the	action	server:

user@hostname$	rosrun	basics	simple_action_server.py

Let’s	check	that	the	expected	topics	are	present:

user@hostname$	rostopic	list

/rosout

/rosout_agg

/timer/cancel

/timer/feedback

/timer/goal

/timer/result

/timer/status

That	looks	good:	we	can	see	the	five	topics	in	the	timer	namespace	that	are	used	under	the
hood	to	manage	the	action.	Let’s	take	a	closer	look	at	the	/timer/goal	topic,	using
rostopic:

user@hostname$	rostopic	info	/timer/goal

Type:	basics/TimerActionGoal

Publishers:	None

Subscribers:

	*	/timer_action_server	(http://localhost:63174/)

What’s	a	TimerActionGoal?	Let’s	dig	in	further,	now	with	rosmsg:

user@hostname$	rosmsg	show	TimerActionGoal

[basics/TimerActionGoal]:

std_msgs/Header	header

		uint32	seq

		time	stamp

		string	frame_id

actionlib_msgs/GoalID	goal_id

		time	stamp

		string	id

basics/TimerGoal	goal

		duration	time_to_wait

Interesting;	we	can	see	our	goal	definition	in	there,	as	the	goal.time_to_wait	field,	but
there	are	also	some	extra	fields	that	we	didn’t	specify.	Those	extra	fields	are	used	by	the
action	server	and	client	code	to	keep	track	of	what’s	happening.	Fortunately,	that
bookkeeping	information	is	automatically	stripped	away	before	our	server	code	sees	a
goal	message.	While	a	TimerActionGoal	message	is	sent	over	the	wire,	what	we	see	in
our	goal	execution	is	a	bare	TimerGoal	message,	which	is	just	what	we	defined	in	our
.action	file:

user@hostname$	rosmsg	show	TimerGoal

[basics/TimerGoal]:

duration	time_to_wait



In	general,	if	you’re	using	the	libraries	in	the	actionlib	package,	you	should	not	need	to
access	the	autogenerated	messages	with	Action	in	their	type	name.	The	bare	Goal,
Result,	and	Feedback	messages	should	suffice.

If	you	like,	you	can	publish	and	subscribe	directly	to	an	action	server’s	topics	using	the
autogenerated	Action	message	types.	This	is	a	nice	feature	of	ROS	actions:	they	are	just	a
higher-level	protocol	built	on	top	of	ROS	messages.	But	for	most	applications	(including
everything	that	we’ll	cover	in	this	book),	the	actionlib	libraries	will	do	the	job,	handling
the	underlying	messages	for	you	behind	the	scenes.



Using	an	Action
The	easiest	way	to	use	an	action	is	via	the	SimpleActionClient	class	from	the	actionlib
package.	Example	5-3	shows	a	simple	client	that	sends	a	goal	to	our	action	server	and
waits	for	the	result.

Example	5-3.	simple_action_client.py
#!	/usr/bin/env	python

import	rospy

import	actionlib

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult

rospy.init_node('timer_action_client')

client	=	actionlib.SimpleActionClient('timer',	TimerAction)

client.wait_for_server()

goal	=	TimerGoal()

goal.time_to_wait	=	rospy.Duration.from_sec(5.0)

client.send_goal(goal)

client.wait_for_result()

print('Time	elapsed:	%f'%(client.get_result().time_elapsed.to_sec()))

Let’s	step	through	the	key	parts	of	the	code.	Following	the	usual	imports	and	initialization
of	our	ROS	node,	we	create	a	SimpleActionClient.	The	first	constructor	argument	is	the
name	of	the	action	server,	which	the	client	will	use	to	determine	the	topics	that	it	will	use
when	communicating	with	the	server.	This	name	must	match	the	one	that	we	used	in
creating	the	server,	which	is	timer.	The	second	argument	is	the	type	of	the	action,	which
must	also	match	the	server:	TimerAction.

Having	created	the	client,	we	tell	it	to	wait	for	the	action	server	to	come	up,	which	it	does
by	checking	for	the	five	advertised	topics	that	we	saw	earlier	when	testing	the	server.
Similar	to	rospy.wait_for_service(),	which	we	used	to	wait	for	a	service	to	be	ready,
SimpleActionClient.wait_for_server()	will	block	until	the	server	is	ready:

client	=	actionlib.SimpleActionClient('timer',	TimerAction)

client.wait_for_server()

Now	we	create	a	goal	of	type	TimerGoal	and	fill	in	the	amount	of	time	we	want	the	timer
to	wait,	which	is	five	seconds.	Then	we	send	the	goal,	which	causes	the	transmission	of
the	goal	message	to	the	server:

goal	=	TimerGoal()

goal.time_to_wait	=	rospy.Duration.from_sec(5.0)

client.send_goal(goal)

Next,	we	wait	for	a	result	from	the	server.	If	things	are	working	properly,	we	expect	to
block	here	for	about	five	seconds.	After	the	result	comes	in,	we	use	get_result()	to
retrieve	it	from	within	the	client	object	and	print	out	the	time_elapsed	field	that	was
reported	by	the	server:

client.wait_for_result()

print('Time	elapsed:	%f'%(client.get_result().time_elapsed.to_sec()))



Checking	That	Everything	Works	as	Expected
Now	that	we	have	implemented	the	action	client,	we	can	get	to	work.	Make	sure	that	your
roscore	and	action	server	are	still	running,	then	run	the	action	client:

user@hostname$	rosrun	basics	simple_action_client.py

Time	elapsed:	5.001044

Between	the	invocation	of	the	client	and	the	printing	of	the	result	data,	you	should	see	a
delay	of	approximately	five	seconds,	as	requested.	The	time	elapsed	should	be	slightly
more	than	five	seconds,	because	a	call	to	time.sleep()	will	usually	take	a	little	longer
than	requested.



Implementing	a	More	Sophisticated	Action	Server
508.450So	far,	actions	look	a	lot	like	services,	just	with	more	configuration	and	setup.
Now	it’s	time	to	exercise	the	asynchronous	aspects	of	actions	that	set	them	apart	from
services.	We’ll	start	on	the	server	side,	making	some	changes	that	demonstrate	how	to
abort	a	goal,	how	to	handle	a	goal	preemption	request,	and	how	to	provide	feedback	while
pursuing	a	goal.	Example	5-4	shows	the	code	for	our	improved	action	server.

Example	5-4.	fancy_action_server.py
#!	/usr/bin/env	python

import	rospy

import	time

import	actionlib

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult,	TimerFeedback

def	do_timer(goal):

				start_time	=	time.time()

				update_count	=	0

				if	goal.time_to_wait.to_sec()	>	60.0:

								result	=	TimerResult()

								result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

								result.updates_sent	=	update_count

								server.set_aborted(result,	"Timer	aborted	due	to	too-long	wait")

								return

				while	(time.time()	-	start_time)	<	goal.time_to_wait.to_sec():

								if	server.is_preempt_requested():

												result	=	TimerResult()

												result.time_elapsed	=	\

																rospy.Duration.from_sec(time.time()	-	start_time)

												result.updates_sent	=	update_count

												server.set_preempted(result,	"Timer	preempted")

												return

								feedback	=	TimerFeedback()

								feedback.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

								feedback.time_remaining	=	goal.time_to_wait	-	feedback.time_elapsed

								server.publish_feedback(feedback)

								update_count	+=	1

								time.sleep(1.0)

				result	=	TimerResult()

				result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

				result.updates_sent	=	update_count

				server.set_succeeded(result,	"Timer	completed	successfully")

rospy.init_node('timer_action_server')

server	=	actionlib.SimpleActionServer('timer',	TimerAction,	do_timer,	False)

server.start()

rospy.spin()

Let’s	step	through	the	changes	with	respect	to	Example	5-2.	Because	we	will	be	providing
feedback,	we	add	TimerFeedback	to	the	list	of	message	types	that	we	import:

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult,	TimerFeedback

Stepping	inside	our	do_timer()	callback,	we	add	a	variable	that	will	keep	track	of	how
many	times	we	publish	feedback:

				update_count	=	0



Next,	we	add	some	error	checking.	We	don’t	want	this	timer	to	be	used	for	long	waits,	so
we	check	whether	the	requested	time_to_wait	is	greater	than	60	seconds,	and	if	so,	we
explicitly	abort	the	goal	by	calling	set_aborted().	This	call	sends	a	message	to	the	client
notifying	it	that	the	goal	has	been	aborted.	Like	with	set_succeeded(),	we	include	a
result;	doing	this	is	optional,	but	a	good	idea	if	possible.	We	also	include	a	status	string	to
help	the	client	understand	what	happened;	in	this	case,	we	aborted	because	the	requested
wait	was	too	long.	Finally,	we	return	from	the	callback	because	we’re	done	with	this	goal:

				if	goal.time_to_wait.to_sec()	>	60.0:

								result	=	TimerResult()

								result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

								result.updates_sent	=	update_count

								server.set_aborted(result,	"Timer	aborted	due	to	too-long	wait")

								return

Now	that	we’re	past	the	error	check,	instead	of	just	sleeping	for	the	requested	time	in	one
shot,	we’re	going	to	loop,	sleeping	in	increments.	This	allows	us	to	do	things	while	we’re
working	toward	the	goal,	such	as	checking	for	preemption	and	providing	feedback:

				while	(time.time()	-	start_time)	<	goal.time_to_wait.to_sec():

In	the	loop,	we	first	check	for	preemption	by	asking	the	server	is_preempt_requested().
This	function	will	return	True	if	the	client	has	requested	that	we	stop	pursuing	the	goal
(this	could	also	happen	if	a	second	client	sends	us	a	new	goal).	If	so,	similar	to	the	abort
case,	we	fill	in	a	result	and	provide	a	status	string,	this	time	calling	set_preempted():

								if	server.is_preempt_requested():

												result	=	TimerResult()

												result.time_elapsed	=	\

																rospy.Duration.from_sec(time.time()	-	start_time)

												result.updates_sent	=	update_count

												server.set_preempted(result,	"Timer	preempted")

												return

Next	we	send	feedback,	using	the	type	TimerFeedback,	which	corresponds	to	the	feedback
part	of	Timer.action.	We	fill	in	the	time_elapsed	and	time_remaining	fields,	then	call
publish_feedback()	to	send	it	to	the	client.	We	also	increment	update_count	to	reflect
the	fact	that	we	sent	another	update:

								feedback	=	TimerFeedback()

								feedback.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

								feedback.time_remaining	=	goal.time_to_wait	-	feedback.time_elapsed

								server.publish_feedback(feedback)

								update_count	+=	1

Then	we	sleep	a	little	and	loop.	Sleeping	for	a	fixed	amount	of	time	here	is	not	the	right
way	to	implement	a	timer,	as	we	could	easily	end	up	sleeping	longer	than	requested,	but	it
makes	for	a	simpler	example:

								time.sleep(1.0)



Exiting	the	loop	means	that	we’ve	successfully	slept	for	the	requested	duration,	so	it’s
time	to	notify	the	client	that	we’re	done.	This	step	is	very	similar	to	the	simple	action
server,	except	that	we	fill	in	the	updates_sent	field	and	add	a	status	string:

				result	=	TimerResult()

				result.time_elapsed	=	rospy.Duration.from_sec(time.time()	-	start_time)

				result.updates_sent	=	update_count

				server.set_succeeded(result,	"Timer	completed	successfully")

The	rest	of	the	code	is	unchanged	from	Example	5-2:	initialize	the	node,	create	and	start
the	action	server,	then	wait	for	goals.



Using	the	More	Sophisticated	Action
Now	we’ll	modify	the	action	client	to	try	out	the	new	capabilities	that	we	added	to	the
action	server:	we’ll	process	feedback,	preempt	a	goal,	and	trigger	an	abort.	Example	5-5
shows	the	code	for	our	improved	action	client.

Example	5-5.	fancy_action_client.py
#!	/usr/bin/env	python

import	rospy

import	time

import	actionlib

from	basics.msg	import	TimerAction,	TimerGoal,	TimerResult,	TimerFeedback

def	feedback_cb(feedback):

				print('[Feedback]	Time	elapsed:	%f'%(feedback.time_elapsed.to_sec()))

				print('[Feedback]	Time	remaining:	%f'%(feedback.time_remaining.to_sec()))

rospy.init_node('timer_action_client')

client	=	actionlib.SimpleActionClient('timer',	TimerAction)

client.wait_for_server()

goal	=	TimerGoal()

goal.time_to_wait	=	rospy.Duration.from_sec(5.0)

#	Uncomment	this	line	to	test	server-side	abort:

#goal.time_to_wait	=	rospy.Duration.from_sec(500.0)

client.send_goal(goal,	feedback_cb=feedback_cb)

#	Uncomment	these	lines	to	test	goal	preemption:

#time.sleep(3.0)

#client.cancel_goal()

client.wait_for_result()

print('[Result]	State:	%d'%(client.get_state()))

print('[Result]	Status:	%s'%(client.get_goal_status_text()))

print('[Result]	Time	elapsed:	%f'%(client.get_result().time_elapsed.to_sec()))

print('[Result]	Updates	sent:	%d'%(client.get_result().updates_sent))

Let’s	step	through	the	changes	with	respect	to	Example	5-3.	We	define	a	callback,
feedback_cb(),	that	will	be	invoked	when	we	receive	a	feedback	message.	In	this
callback	we	just	print	the	contents	of	the	feedback:

def	feedback_cb(feedback):

				print('[Feedback]	Time	elapsed:	%f'%(feedback.time_elapsed.to_sec()))

				print('[Feedback]	Time	remaining:	%f'%(feedback.time_remaining.to_sec()))

We	register	our	feedback	callback	by	passing	it	as	the	feedback_cb	keyword	argument
when	calling	send_goal():

client.send_goal(goal,	feedback_cb=feedback_cb)

After	receiving	the	result,	we	print	a	little	more	information	to	show	what	happened.	The
get_state()	function	returns	the	state	of	the	goal,	which	is	an	enumeration	that	is	defined
in	actionlib_msgs/GoalStatus.	While	there	are	10	possible	states,	in	this	example	we’ll
encounter	only	three:	PREEMPTED=2,	SUCCEEDED=3,	and	ABORTED=4.	We	also	print	the	status
text	that	was	included	by	the	server	with	the	result:

print('[Result]	State:	%d'%(client.get_state()))

print('[Result]	Status:	%s'%(client.get_goal_status_text()))



print('[Result]	Time	elapsed:	%f'%(client.get_result().time_elapsed.to_sec()))

print('[Result]	Updates	sent:	%d'%(client.get_result().updates_sent))



Checking	That	Everything	Works	as	Expected
Let’s	try	out	our	new	server	and	client.	As	before,	start	up	a	roscore,	then	run	the	server:

user@hostname$	rosrun	basics	fancy_action_server.py

In	another	terminal,	run	the	client:

user@hostname$	rosrun	basics	fancy_action_client.py

[Feedback]	Time	elapsed:	0.000044

[Feedback]	Time	remaining:	4.999956

[Feedback]	Time	elapsed:	1.001626

[Feedback]	Time	remaining:	3.998374

[Feedback]	Time	elapsed:	2.003189

[Feedback]	Time	remaining:	2.996811

[Feedback]	Time	elapsed:	3.004825

[Feedback]	Time	remaining:	1.995175

[Feedback]	Time	elapsed:	4.006477

[Feedback]	Time	remaining:	0.993523

[Result]	State:	3

[Result]	Status:	Timer	completed	successfully

[Result]	Time	elapsed:	5.008076

[Result]	Updates	sent:	5

Everything	works	as	expected:	while	waiting,	we	receive	one	feedback	update	per	second,
then	we	receive	a	successful	result	(SUCCEEDED=3).

Now	let’s	try	preempting	a	goal.	In	the	client,	following	the	call	to	send_goal(),
uncomment	these	two	lines,	which	will	cause	the	client	to	sleep	briefly,	then	request	that
the	server	preempt	the	goal:

#	Uncomment	these	lines	to	test	goal	preemption:

#time.sleep(3.0)

#client.cancel_goal()

Run	the	client	again:

user@hostname$	rosrun	basics	fancy_action_client.py

[Feedback]	Time	elapsed:	0.000044

[Feedback]	Time	remaining:	4.999956

[Feedback]	Time	elapsed:	1.001651

[Feedback]	Time	remaining:	3.998349

[Feedback]	Time	elapsed:	2.003297

[Feedback]	Time	remaining:	2.996703

[Result]	State:	2

[Result]	Status:	Timer	preempted

[Result]	Time	elapsed:	3.004926

[Result]	Updates	sent:	3

That’s	the	behavior	we	expect:	the	server	pursues	the	goal,	providing	feedback,	until	we
send	the	cancellation	request,	after	which	we	receive	the	result	confirming	the	preemption
(PREEMPTED=2).

Now	let’s	trigger	a	server-side	abort.	In	the	client,	uncomment	this	line	to	change	the
requested	wait	time	from	5	seconds	to	500	seconds:

#	Uncomment	this	line	to	test	server-side	abort:

#goal.time_to_wait	=	rospy.Duration.from_sec(500.0)



Run	the	client	again:

user@hostname$	rosrun	basics	fancy_action_client.py

[Result]	State:	4

[Result]	Status:	Timer	aborted	due	to	too-long	wait

[Result]	Time	elapsed:	0.000012

[Result]	Updates	sent:	0

As	expected,	the	server	immediately	aborted	the	goal	(ABORTED=4).



Summary
In	this	chapter,	we	covered	actions,	a	powerful	communications	tool	that	is	commonly
used	in	ROS	systems.	Table	5-1	compares	actions	to	topics	and	services,	which	we
covered	in	earlier	chapters.	Similar	to	services,	actions	allow	you	to	make	a	request	(for
actions,	a	goal)	and	receive	a	response	(for	actions,	a	result).	But	actions	offer	much	more
control	to	both	the	client	and	the	server	than	do	services.	The	server	can	provide	feedback
along	the	way	while	it’s	servicing	the	request:	the	client	can	cancel	a	previously	issued
request;	and,	because	they’re	built	atop	ROS	messages,	actions	are	asynchronous,
allowing	for	nonblocking	programming	on	both	sides.

Table	5-1.	Comparison	of	topics,	services,	and	actions

Type Best	used	for

Topic One-way	communication,	especially	if	there	might	be	multiple	nodes	listening	(e.g.,	streams	of	sensor	data)

Service Simple	request/response	interactions,	such	as	asking	a	question	about	a	node’s	current	state

Action Most	request/response	interactions,	especially	when	servicing	the	request	is	not	instantaneous	(e.g.,	navigating
to	a	goal	location)

Taken	together,	these	features	of	actions	make	them	well	suited	to	many	aspects	of	robot
programming.	It’s	common	in	a	robotics	application	to	implement	time-extended,	goal-
seeking	behaviors,	whether	it’s	goto_position	or	clean_the_house.	Any	time	you	need
to	be	able	trigger	a	behavior,	actions	are	probably	the	right	tool	for	the	job.	In	fact,	any
time	that	you’re	using	a	service,	it’s	worth	considering	replacing	it	with	an	action;	actions
require	a	bit	more	code	to	use,	but	in	return	they’re	much	more	powerful	and	extensible
than	services.	We’ll	see	many	examples	in	future	chapters	where	actions	provide	rich	but
easy-to-use	interfaces	to	some	pretty	complex	behaviors.

As	usual,	we	did	not	cover	the	entire	API	in	this	chapter.	There	are	more	sophisticated
uses	of	actions	that	can	be	useful	in	situations	where	you	need	more	control	over	how	the
system	behaves,	such	as	what	to	do	when	there	are	multiple	clients	and/or	multiple
simultaneous	goals.	For	full	details,	consult	the	actionlib	API	documentation.

At	this	point,	you	know	all	of	the	basics	of	ROS:	how	nodes	are	organized	into	a	graph,
how	to	use	the	basic	command-line	tools,	how	to	write	simple	nodes,	and	how	to	get	these
nodes	to	communicate	with	each	other.	Before	we	look	at	our	first	complete	robot
application	in	Chapter	7,	let’s	take	a	moment	to	talk	about	the	various	parts	of	a	robot
system,	for	both	real	and	simulated	robots,	and	how	they	relate	to	ROS.

http://wiki.ros.org/actionlib?distro=indigo




Chapter	6.	Robots	and	Simulators

The	previous	chapters	discussed	many	fundamental	concepts	of	ROS.	They	may	have
seemed	rather	vague	and	abstract,	but	those	concepts	were	necessary	to	describe	how	data
moves	around	in	ROS	and	how	its	software	systems	are	organized.	In	this	chapter,	we	will
introduce	common	robot	subsystems	and	describe	how	the	ROS	architecture	handles
them.	Then,	we	will	introduce	the	robots	that	we	will	use	throughout	the	remainder	of	the
book	and	describe	the	simulators	in	which	we	can	most	easily	experiment	with	them.



Subsystems
Like	all	complex	machines,	robots	are	most	easily	designed	and	analyzed	by	considering
one	subsystem	at	a	time.	In	this	section,	we	will	introduce	the	main	subsystems	commonly
found	on	the	types	of	robots	considered	in	this	book.	Broadly	speaking,	they	can	be
divided	into	three	categories:	actuation,	sensing,	and	computing.	In	the	ROS	context,
actuation	subsystems	are	the	subsystems	that	interact	directly	with	how	the	robot’s	wheels
or	arms	move.	Sensing	subsystems	interact	directly	with	sensor	hardware,	such	as	cameras
or	laser	scanners.	Finally,	the	computational	subsystems	are	what	tie	actuators	and	sensing
together,	with	(ideally)	some	relatively	intelligent	processing	that	allows	the	robot	to
perform	useful	tasks.	We	will	introduce	these	subsystems	in	the	next	few	sections.	Note
that	we	are	not	attempting	to	provide	an	exhaustive	discussion;	rather,	we	are	trying	to
describe	these	subsystems	just	deeply	enough	to	convey	the	issues	typically	faced	when
interacting	with	them	from	a	software	development	standpoint.



Actuation:	Mobile	Platform
The	ability	to	move	around,	or	locomote,	is	a	fundamental	capability	of	many	robots.	It	is
surprisingly	nuanced:	there	are	many	books	written	entirely	on	this	subject!	However,
broadly	speaking,	a	mobile	base	is	a	collection	of	actuators	that	allow	a	robot	to	move
around.	They	come	in	an	astonishingly	wide	variety	of	shapes	and	sizes.

Although	legged	locomotion	is	popular	in	some	domains	in	the	research	community,	and
camera-friendly	walking	robots	have	seen	great	progress	in	recent	years,	most	robots	drive
around	on	wheels.	This	is	because	of	two	main	reasons.	First,	wheeled	platforms	are	often
simpler	to	design	and	manufacture.	Second,	for	the	very	smooth	surfaces	that	are	common
in	artificial	environments,	such	as	indoor	floors	or	outdoor	pavement,	wheels	are	the	most
energy-efficient	way	to	move	around.

The	simplest	possible	configuration	of	a	wheeled	mobile	robot	is	called	differential	drive.
It	consists	of	two	independently	actuated	wheels,	often	located	on	the	centerline	of	a	round
robot.	In	this	configuration,	the	robot	moves	forward	when	both	wheels	turn	forward,	and
spins	in	place	when	one	wheel	drives	forward	and	one	drives	backward.	Differential-drive
robots	often	have	one	or	more	casters,	which	are	unpowered	wheels	that	spin	freely	to
support	the	front	and	back	of	the	robot,	just	like	the	wheels	on	the	bottom	of	a	typical
office	chair.	This	is	an	example	of	a	statically	stable	robot,	which	means	that,	when
viewed	from	above,	the	center	of	mass	of	the	robot	is	inside	a	polygon	formed	by	the
points	of	contact	between	the	wheels	and	the	ground.	Statically	stable	robots	are	simple	to
model	and	control,	and	among	their	virtues	is	the	fact	that	power	can	be	shut	off	to	the
robot	at	any	time,	and	it	will	not	fall	over.

However,	dynamically	stable	or	balancing	wheeled	mobile	robots	are	also	possible,	with
the	term	dynamic	implying	that	the	actuators	must	constantly	be	in	motion	(however
slight)	to	preserve	stability.	The	simplest	dynamically	stable	wheeled	robots	look	like	(and
often	are	literally	built	upon)	Segway	platforms,	with	a	pair	of	large	differential-drive
wheels	supporting	a	tall	robot	above.	Among	the	benefits	of	balancing	wheeled	mobile
bases	is	that	the	wheels	contacting	the	ground	can	have	very	large	diameters,	which	allows
the	robot	to	smoothly	drive	over	small	obstacles:	imagine	the	difference	between	running
over	a	pebble	with	an	office-chair	wheel	versus	a	bicycle	wheel	(this	is,	in	fact,	precisely
the	reason	why	bicycle	wheels	are	large).	Another	advantage	of	balancing	wheeled	mobile
robots	is	that	the	footprint	of	the	robot	can	be	kept	small,	which	can	be	useful	in	tight
quarters.

The	differential-drive	scheme	can	be	extended	to	more	than	two	wheels	and	is	often	called
skid	steering.	Four-wheel	and	six-wheel	skid-steering	schemes	are	common,	in	which	all
of	the	wheels	on	the	left	side	of	the	robot	actuate	together,	and	all	of	the	wheels	on	the
right	side	actuate	together.	As	the	number	of	wheels	extends	beyond	six,	typically	the
wheels	are	connected	by	external	tracks,	as	exemplified	by	excavators	or	tanks.

As	is	typically	the	case	in	engineering,	there	are	trade-offs	with	the	skid-steering	scheme,
and	it	makes	sense	for	some	applications,	but	not	all.	One	advantage	is	that	skid	steering



provides	maximum	traction	while	preserving	mechanical	simplicity	(and	thus	controlling
cost),	since	all	contact	points	between	the	vehicle	and	the	ground	are	being	actively
driven.	However,	skid	steering	is,	as	its	name	states,	constantly	skidding	when	it	is	not
driving	exactly	forward	or	backward.

In	some	situations,	traction	and	the	ability	to	surmount	large	obstacles	are	valued	so	highly
that	skid	steering	platforms	are	used	extensively.	However,	all	this	traction	comes	at	a
cost:	the	constant	skidding	is	tremendously	inefficient,	since	massive	energy	is	spent
tearing	up	the	dirt	(or	heating	up	the	wheels)	whenever	the	robot	turns	at	low	speeds.	In
the	most	extreme	case,	when	trying	to	turn	in	place	with	one	set	of	wheels	turning
forwards	and	the	other	turning	backward,	the	wheels	are	skidding	dramatically,	which	can
tear	up	gentle	surfaces	and	wear	tires	quickly.	This	is	why	excavators	are	typically	towed
to	a	construction	site	on	a	trailer!

The	inefficiencies	and	wear	and	tear	of	skid	steering	are	among	the	reasons	why	passenger
cars	use	more	complex	(and	expensive)	schemes	to	get	around.	They	are	often	called
Ackerman	platforms,	in	which	the	rear	wheels	are	always	pointed	straight	ahead,	and	the
front	wheels	turn	together.	Placing	the	wheels	at	the	extreme	corners	of	the	vehicle
maximizes	the	area	of	the	supporting	polygon,	which	is	why	cars	can	turn	sharp	corners
without	tipping	over	and	(when	not	driven	in	action	movies)	car	wheels	do	not	have	to
skid	when	turning.	However,	the	downside	of	Ackerman	platforms	is	that	they	cannot
drive	sideways,	since	the	rear	wheels	are	always	facing	forward.	This	is	why	parallel
parking	is	a	dreaded	portion	of	any	driver’s	license	examination:	elaborate	planning	and
sequential	actuator	maneuvers	are	required	to	move	an	Ackerman	platform	sideways.

All	of	the	platforms	described	thus	far	can	be	summarized	as	being	non-holonomic,	which
means	that	they	cannot	move	in	any	direction	at	any	given	time.	For	example,	neither
differential-drive	platforms	nor	Ackerman	platforms	can	move	sideways.	To	do	this,	a
holonomic	platform	is	required,	which	can	be	built	using	steered	casters.	Each	steered
caster	actuator	has	two	motors:	one	motor	rotates	the	wheel	forward	and	backward,	and
another	motor	steers	the	wheel	about	its	vertical	axis.	This	allows	the	platform	to	move	in
any	direction	while	spinning	arbitrarily.	Although	significantly	more	complex	to	build	and
maintain,	these	platforms	simplify	motion	planning.	Imagine	the	ease	of	parallel	parking	if
you	could	drive	sideways	into	a	parking	spot!

As	a	special	case,	when	the	robot	only	needs	to	move	on	very	smooth	surfaces,	a	low-cost
holonomic	platform	can	be	built	using	Mecanum	wheels.	These	are	clever	contraptions	in
which	each	wheel	has	a	series	of	rollers	on	its	rim,	angled	at	45	degrees	to	the	plane	of	the
wheel.	Using	this	scheme,	motion	in	any	direction	(with	any	rate	of	rotation)	is	possible	at
all	times,	using	only	four	actuators,	without	skidding.	However,	due	to	the	small	diameter
of	the	roller	wheels,	it	is	only	suitable	for	very	smooth	surfaces	such	as	hard	flooring	or
extremely	short-pile	carpets.

Because	one	of	the	design	goals	of	ROS	is	to	allow	software	reuse	across	a	variety	of
robots,	ROS	software	that	interacts	with	mobile	platforms	virtually	always	uses	a	Twist



message.	A	twist	is	a	way	to	express	general	linear	and	angular	velocities	in	three
dimensions.	Although	it	may	seem	easier	to	express	mobile	base	motions	simply	by
expressing	wheel	velocities,	using	the	linear	and	angular	velocities	of	the	center	of	the
vehicle	allows	the	software	to	abstract	away	the	kinematics	of	the	vehicle.

For	example,	high-level	software	can	command	the	vehicle	to	drive	forward	at	0.5
meters/second	while	rotating	clockwise	at	0.1	radians/second.	From	the	standpoint	of	the
high-level	software,	whether	the	mobile	platform’s	actuators	are	arranged	as	differential-
drive,	Ackerman	steering,	or	Mecanum	wheels	is	irrelevant,	just	as	the	transmission	ratios
and	wheel	diameters	are	irrelevant	to	high-level	behaviors.

The	robots	described	in	this	book	will	only	be	navigating	on	flat,	two-dimensional
surfaces	and	are	commonly	called	planar	robots.	However,	expressing	velocities	in	three
dimensions	allows	path	planning	or	obstacle	avoidance	software	to	be	used	by	vehicles
capable	of	more	general	motions,	such	as	aerial,	underwater,	or	space	vehicles.	It	is
important	to	recognize	that	even	for	vehicles	designed	for	two-dimensional	navigation,	the
general	three-dimensional	twist	methodology	is	necessary	to	express	desired	or	actual
motions	of	many	types	of	actuators,	such	as	grippers,	since	they	are	often	capable	of	three-
dimensional	motions	when	flying	on	the	end	of	a	manipulator	arm	even	when	the	mobile
base	is	constrained	to	the	floor	plane.	Manipulators,	in	fact,	comprise	the	other	main
application	domain	for	robot	actuators	and	will	be	discussed	in	the	next	section.



Actuation:	Manipulator	Arm
Many	robots	need	to	manipulate	objects	in	their	environment.	For	example,	packing	or
palletizing	robots	sit	on	the	end	of	a	production	line,	grab	items	coming	down	the	line,	and
place	them	into	boxes	or	stacks.	There	is	an	entire	domain	of	robot	manipulation	tasks
called	pick	and	place,	in	which	manipulator	arms	grasp	items	and	place	them	somewhere
else.	Security	robot	tasks	include	handling	suspicious	items,	for	which	a	strong
manipulator	arm	is	often	required.	An	emerging	class	of	personal	robots	hope	to	be	useful
in	home	and	office	applications,	performing	manipulation	tasks	including	cleaning,
delivering	items,	preparing	meals,	and	so	on.

As	with	mobile	bases,	there’s	astonishing	variety	in	manipulator-arm	subsystems	across
robots,	with	many	trade-offs	made	to	support	particular	application	domains	and	price
points.

Although	there	are	exceptions,	the	majority	of	manipulator	arms	are	formed	by	a	chain	of
rigid	links	connected	by	joints.	The	simplest	kinds	of	joints	are	single-axis	revolute	joints
(also	called	“pin”	joints),	where	one	link	has	a	shaft	that	serves	as	the	axis	around	which
the	next	link	rotates,	in	the	same	way	that	a	typical	residential	door	rotates	around	its
hinge	pins.	However,	linear	joints	(also	called	prismatic	joints)	are	also	common,	in	which
one	link	has	a	slide	or	tube	along	which	the	next	link	travels,	just	as	a	sliding	door	runs
sideways	back	and	forth	along	its	track.

A	fundamental	characteristic	of	a	robot	manipulator	is	the	number	of	degrees	of	freedom
(DOF)	of	its	design.	Often,	the	number	of	joints	is	equal	to	the	number	of	actuators;	when
those	numbers	differ,	typically	the	DOF	is	taken	to	be	the	lower	of	the	two	numbers.
Regardless,	the	number	of	degrees	of	freedom	is	one	of	the	most	significant	drivers	of
manipulator	size,	mass,	dexterity,	cost,	and	reliability.	Adding	DOF	to	the	distal	(far)	end
of	a	robot	arm	typically	increases	its	mass,	which	requires	larger	actuators	on	the	proximal
(near)	joints,	which	further	increases	the	mass	of	the	manipulator.

In	general,	six	DOF	are	required	to	position	the	wrist	of	the	manipulator	arm	in	any
location	and	orientation	within	its	workspace,	providing	that	each	joint	has	full	range	of
motion.	In	this	context,	workspace	has	a	precise	meaning:	it	is	the	space	that	a	robot
manipulator	can	reach.	A	subset	of	the	robot’s	workspace,	called	the	dextrous	workspace,
is	the	region	in	which	a	robot	can	achieve	all	positions	and	orientations	of	the	end	effector.
Generally	speaking,	having	a	larger	dextrous	workspace	is	a	good	thing	for	robots,	but
unfortunately	full	(360-degree)	range	of	motion	on	six	joints	of	a	robot	is	often	extremely
difficult	to	achieve	at	reasonable	cost,	due	to	constraints	of	mechanical	structures,
electrical	wiring,	and	so	on.	As	a	result,	seven-DOF	arms	are	often	used.	The	seventh
DOF	provides	an	extra	degree	of	freedom	that	can	be	used	to	move	the	links	of	the	arm
while	maintaining	the	position	and	orientation	of	the	wrist,	much	as	a	human	arm	can
move	its	elbow	through	an	arc	segment	while	maintaining	the	wrist	in	the	same	position.
This	“extra”	DOF	can	help	contribute	to	a	relatively	large	dextrous	workspace	even	when
each	individual	joint	has	a	restricted	range	of	motion.



Research	robots	intended	for	manipulation	tasks	in	human	environments	often	have
human-scale,	seven-DOF	arms,	quite	simply	because	the	desired	workspaces	are	human-
scale	surfaces,	such	as	tables	or	countertops	in	home	and	office	environments.	In	contrast,
robots	intended	for	industrial	applications	have	wildly	varying	dimensions	and	joint
configurations	depending	on	the	tasks	they	are	to	perform,	since	each	additional	DOF
introduces	additional	cost	and	reliability	concerns.

So	far,	we	have	discussed	the	two	main	classes	of	robot	actuators:	those	used	for
locomotion,	and	those	used	for	manipulation.	The	next	major	class	of	robot	hardware	is	its
sensors.	We’ll	start	with	the	sensor	head,	a	common	mounting	scheme,	and	then	describe
the	subcomponents	found	in	many	robot	sensor	heads.



Sensors
Robots	must	sense	the	world	around	them	in	order	to	react	to	variations	in	tasks	and
environments.	The	sensors	can	range	from	minimalist	setups	designed	for	quick
installation	to	highly	elaborate	and	tremendously	expensive	sensor	rigs.

Many	successful	industrial	deployments	use	surprisingly	little	sensing.	A	remarkable
number	of	complex	and	intricate	industrial	manipulation	tasks	can	be	performed	through	a
combination	of	clever	mechanical	engineering	and	limit	switches,	which	close	or	open	an
electrical	circuit	when	a	mechanical	lever	or	plunger	is	pressed,	in	order	to	start	execution
of	a	preprogrammed	robotic	manipulation	sequence.	Through	careful	mechanical	setup
and	tuning,	these	systems	can	achieve	amazing	levels	of	throughput	and	reliability.	It	is
important,	then,	to	consider	these	binary	sensors	when	enumerating	the	world	of	robotic
sensing.	These	sensors	are	typically	either	“on”	or	“off.”	In	addition	to	mechanical	limit
switches,	other	binary	sensors	include	optical	limit	switches,	which	use	a	mechanical
“flag”	to	interrupt	a	light	beam,	and	bump	sensors,	which	channel	mechanical	pressure
along	a	relatively	large	distance	to	a	single	mechanical	switch.	These	relatively	simple
sensors	are	a	key	part	of	modern	industrial	automation	equipment,	and	their	importance
can	hardly	be	overstated.

Another	class	of	sensors	return	scalar	readings.	For	example,	a	pressure	sensor	can
estimate	the	mechanical	or	barometric	pressure	and	will	typically	output	a	scalar	value
along	some	range	of	sensitivity	chosen	at	time	of	manufacture.	Range	sensors	can	be
constructed	from	many	physical	phenomena	(sound,	light,	etc.)	and	will	also	typically
return	a	scalar	value	in	some	range,	which	seldom	includes	zero	or	infinity!

Each	sensor	class	has	its	own	quirks	that	distort	its	view	of	reality	and	must	be
accommodated	by	sensor-processing	algorithms.	These	quirks	can	often	be	surprisingly
severe.	For	example,	a	range	sensor	may	have	a	“minimum	distance”	restriction:	if	an
object	is	closer	than	that	minimum	distance,	it	will	not	be	sensed.	As	a	result	of	these
quirks,	it	is	often	advantageous	to	combine	several	different	types	of	sensors	in	a	robotic
system.

However,	many	of	the	applications	we	will	describe	in	this	book	are	reliant	on	“rich”
sensor	data,	which	is	a	vague	term	that	generally	means	that	the	robot’s	perception
algorithms	consider	something	more	than	a	small	number	of	binary	or	scalar	sensors.	Any
configuration	of	sensing	hardware	is	possible	(and	has	likely	been	tried),	but	for
convenience,	aesthetics,	and	to	preserve	line-of-sight	with	the	center	of	the	workspace,	it
is	common	for	robots	to	have	a	sensor	head	on	top	of	the	platform	that	integrates	several
sensors	in	the	same	physical	enclosure.	Often,	sensor	heads	sit	atop	a	pan/tilt	assembly,	so
that	they	can	rotate	to	a	bearing	of	interest	and	look	up	or	down	as	needed.	The	following
several	sections	will	describe	sensors	commonly	found	in	robot	sensor	heads	and	on	other
parts	of	their	bodies.

Visual	cameras



Higher-order	animals	tends	to	rely	on	visual	data	to	react	to	the	world	around	them.	If	only
robots	were	as	smart	as	animals!	Unfortunately,	using	camera	data	intelligently	is
surprisingly	difficult,	as	we	will	describe	in	later	chapters	of	this	book.	However,	cameras
are	cheap	and	often	useful	for	teleoperation,	so	it	is	common	to	see	them	on	robot	sensor
heads.

Interestingly,	it	is	often	more	mathematically	robust	to	describe	robot	tasks	and
environments	in	three	dimensions	(3D)	than	it	is	to	work	with	2D	camera	images.	This	is
because	the	3D	shapes	of	tasks	and	environments	are	invariant	to	changes	in	scene
lighting,	shadows,	occlusions,	and	so	on.	In	fact,	in	a	surprising	number	of	application
domains,	the	visual	data	is	largely	ignored;	the	algorithms	are	interested	in	3D	data.	As	a
result,	intense	research	efforts	have	been	expended	on	producing	3D	data	of	the	scene	in
front	of	the	robot.

When	two	cameras	are	rigidly	mounted	to	a	common	mechanical	structure,	they	form	a
stereo	camera.	Each	camera	sees	a	slightly	different	view	of	the	world,	and	these	slight
differences	can	be	used	to	estimate	the	distances	to	various	features	in	the	image.	This
sounds	simple,	but	as	always,	the	devil	is	in	the	details.	The	performance	of	a	stereo
camera	depends	on	a	large	number	of	factors,	such	as	the	quality	of	the	camera’s
mechanical	design,	its	resolution,	its	lens	type	and	quality,	and	so	on.	Equally	important
are	the	qualities	of	the	scene	being	imaged:	a	stereo	camera	can	only	estimate	the
distances	to	mathematically	discernable	features	in	the	scene,	such	as	sharp,	high-contrast
corners.	A	stereo	camera	cannot,	for	example,	estimate	the	distance	to	a	featureless	wall,
although	it	can	most	likely	estimate	the	distance	to	the	corners	and	edges	of	the	wall,	if
they	intersect	a	floor,	ceiling,	or	other	wall	of	a	different	color.	Many	natural	outdoor
scenes	possess	sufficient	texture	that	stereo	vision	can	be	made	to	work	quite	well	for
depth	estimation.	Uncluttered	indoor	scenes,	however,	can	often	be	quite	difficult.

Several	conventions	have	emerged	in	the	ROS	community	for	handling	cameras.	The
canonical	ROS	message	type	for	images	is	sensor_msgs/Image,	and	it	contains	little	more
than	the	size	of	the	image,	its	pixel	encoding	scheme,	and	the	pixels	themselves.	To
describe	the	intrinsic	distortion	of	the	camera	resulting	from	its	lens	and	sensor	alignment,
the	sensor_msgs/CameraInfo	message	is	used.	Often,	these	ROS	images	need	to	be	sent
to	and	from	OpenCV,	a	popular	computer	vision	library.	The	cv_bridge	package	is
intended	to	simplify	this	operation	and	will	be	used	throughout	the	book.

Depth	cameras

As	discussed	in	the	previous	section,	even	though	visual	camera	data	is	intuitively
appealing,	and	seems	like	it	should	be	useful	somehow,	many	perception	algorithms	work
much	better	with	3D	data.	Fortunately,	the	past	few	years	have	seen	massive	progress	in
low-cost	depth	cameras.	Unlike	the	passive	stereo	cameras	described	in	the	previous
section,	depth	cameras	are	active	devices.	They	illuminate	the	scene	in	various	ways,
which	greatly	improves	the	system	performance.	For	example,	a	completely	featureless
indoor	wall	or	surface	is	essentially	impossible	to	detect	using	passive	stereo	vision.



However,	many	depth	cameras	will	shine	a	texture	pattern	on	the	surface,	which	is
subsequently	imaged	by	its	camera.	The	texture	pattern	and	camera	are	typically	set	to
operate	in	near-infrared	wavelengths	to	reduce	the	system’s	sensitivity	to	the	colors	of
objects,	as	well	as	to	not	be	distracting	to	people	nearby.

Some	common	depth	cameras,	such	as	the	Microsoft	Kinect,	project	a	structured	light
image.	The	device	projects	a	precisely	known	pattern	into	the	scene,	its	camera	observes
how	this	pattern	is	deformed	as	it	lands	on	the	various	objects	and	surfaces	of	the	scene,
and	finally	a	reconstruction	algorithm	estimates	the	3D	structure	of	the	scene	from	this
data.	It’s	hard	to	overstate	the	impact	that	the	Kinect	has	had	on	modern	robotics!	It	was
designed	for	the	gaming	market,	which	is	orders	of	magnitude	larger	than	the	robotics
sensor	market,	and	could	justify	massive	expenditures	for	the	development	and	production
of	the	sensor.	The	launch	price	of	$150	was	incredibly	cheap	for	a	sensor	capable	of
outputting	so	much	useful	data.	Many	robots	were	quickly	retrofitted	to	hold	Kinects,	and
the	sensor	continues	to	be	used	across	research	and	industry.

Although	the	Kinect	is	the	most	famous	(and	certainly	the	most	widely	used)	depth
camera	in	robotics,	many	other	depth-sensing	schemes	are	possible.	For	example,
unstructured	light	depth	cameras	employ	“standard”	stereo-vision	algorithms	with	random
texture	injected	into	the	scene	by	some	sort	of	projector.	This	scheme	has	been	shown	to
work	far	better	than	passive	stereo	systems	in	feature-scarce	environments,	such	as	many
indoor	scenes.

A	different	approach	is	used	by	time-of-flight	depth	cameras.	These	imagers	rapidly	blink
an	infrared	LED	or	laser	illuminator,	while	using	specially	designed	pixel	structures	in
their	image	sensors	to	estimate	the	time	required	for	these	light	pulses	to	fly	into	the	scene
and	bounce	back	to	the	depth	camera.	Once	this	“time	of	flight”	is	estimated,	the
(constant)	speed	of	light	can	be	used	to	convert	the	estimates	into	a	depth	image.

Intense	research	and	development	is	occurring	in	this	domain,	due	to	the	enormous
existing	and	potential	markets	for	depth	cameras	in	video	games	and	other	mass-market
user-interaction	scenarios.	It	is	not	yet	clear	which	(if	any)	of	the	schemes	discussed
previously	will	end	up	being	best	suited	for	robotics	applications.	At	the	time	of	writing,
cameras	using	all	of	the	previous	modalities	are	in	common	usage	in	robotics	experiments.

Just	like	visual	cameras,	depth	cameras	produce	an	enormous	amount	of	data.	This	data	is
typically	in	the	form	of	point	clouds,	which	are	the	3D	points	estimated	to	lie	on	the
surfaces	facing	the	camera.	The	fundamental	point	cloud	message	is
sensor_msgs/PointCloud2	(so	named	purely	for	historical	reasons).	This	message	allows
for	unstructured	point	cloud	data,	which	is	often	advantageous,	since	depth	cameras	often
cannot	return	valid	depth	estimates	for	each	pixel	in	their	images.	As	such,	depth	images
often	have	substantial	“holes,”	which	processing	algorithms	must	handle	gracefully.

Laser	scanners

Although	depth	cameras	have	greatly	changed	the	depth-sensing	market	in	the	last	few



years	due	to	their	simplicity	and	low	cost,	there	are	still	some	applications	in	which	laser
scanners	are	widely	used	due	to	their	superior	accuracy	and	longer	sensing	range.	There
are	many	types	of	laser	scanners,	but	one	of	the	most	common	schemes	used	in	robotics
involves	shining	a	laser	beam	on	a	rotating	mirror	spinning	around	10	to	80	times	per
second	(typically	600	to	4,800	RPM).	As	the	mirror	rotates,	the	laser	light	is	pulsed
rapidly,	and	the	reflected	waveforms	are	correlated	with	the	outgoing	waveform	to
estimate	the	time	of	flight	of	the	laser	pulse	for	a	series	of	angles	around	the	scanner.

Laser	scanners	used	for	autonomous	vehicles	are	considerably	different	from	those	used
for	indoor	or	slow-moving	robots.	Vehicle	laser	scanners	made	by	companies	such	as
Velodyne	must	deal	with	the	significant	aerodynamic	forces,	vibrations,	and	temperature
swings	common	to	the	automotive	environment.	Since	vehicles	typically	move	much
faster	than	smaller	robots,	vehicle	sensors	must	also	have	considerably	longer	range	so
that	sufficient	reaction	time	is	possible.	Additionally,	many	software	tasks	for	autonomous
driving,	such	as	detecting	vehicles	and	obstacles,	work	much	better	when	multiple	laser
scanlines	are	received	each	time	the	device	rotates,	rather	than	just	one.	These	extra
scanlines	can	be	extremely	useful	when	distinguishing	between	classes	of	objects,	such	as
between	trees	and	pedestrians.	To	produce	multiple	scanlines,	automotive	laser	scanners
often	have	multiple	lasers	mounted	together	in	a	rotating	structure,	rather	than	simply
rotating	a	mirror.	All	of	these	additional	features	naturally	add	to	the	complexity,	weight,
size,	and	thus	the	cost	of	the	laser	scanner.

The	complex	signal	processing	steps	required	to	produce	range	estimates	are	virtually
always	handled	by	the	firmware	of	the	laser	scanner	itself.	The	devices	typically	output	a
vector	of	ranges	several	dozen	times	per	second,	along	with	the	starting	and	stopping
angles	of	each	measurement	vector.	In	ROS,	laser	scans	are	stored	in
sensor_msgs/LaserScan	messages,	which	map	directly	from	the	output	of	the	laser
scanner.	Each	manufacturer,	of	course,	has	their	own	raw	message	formats,	but	ROS
drivers	exist	to	translate	between	the	raw	output	of	many	popular	laser	scanner
manufacturers	and	the	sensor_msgs/LaserScan	message	format.

Shaft	encoders

Estimating	the	motions	of	the	robot	is	a	critical	component	of	virtually	all	robotic	systems,
with	solutions	ranging	from	low-level	control	schemes	to	high-level	mapping,
localization,	and	manipulation	algorithms.	Although	estimates	can	be	derived	from	many
sources,	the	simplest	and	often	most	accurate	estimates	are	produced	simply	by	counting
how	many	times	the	motors	or	wheels	have	turned.

Many	different	types	of	shaft	encoders	are	designed	expressly	for	this	purpose.	Shaft
encoders	are	typically	constructed	by	attaching	a	marker	to	the	shaft	and	measuring	its
motion	relative	to	another	frame	of	reference,	such	as	the	chassis	of	the	robot	or	the
previous	link	on	a	manipulator	arm.	The	implementation	may	be	done	with	magnets,
optical	discs,	variable	resistors,	or	variable	capacitors,	among	many	other	options,	with
trade-offs	including	size,	cost,	accuracy,	maximum	speed,	and	whether	the	measurement	is



absolute	or	relative	to	the	position	at	power-up.	Regardless,	the	principle	remains	the
same:	the	angular	position	of	a	marker	on	a	shaft	is	measured	relative	to	an	adjacent	frame
of	reference.

Just	like	automobile	speedometers	and	odometers,	shaft	encoders	are	used	to	count	the
precise	number	of	rotations	of	the	robot’s	wheels,	and	thereby	estimate	how	far	the	vehicle
has	traveled	and	how	much	it	has	turned.	Note	that	odometry	is	simply	a	count	of	how
many	times	the	drive	wheels	have	turned,	and	is	also	known	as	dead	reckoning	in	some
domains.	It	is	not	a	direct	measurement	of	the	vehicle	position.	Minute	differences	in
wheel	diameters,	tire	pressures,	carpet	weave	direction	(really!),	axle	misalignments,
minor	skidding,	and	countless	other	sources	of	error	are	cumulative	over	time.	As	a	result,
the	raw	odometry	estimates	of	any	robot	will	drift;	the	longer	the	robot	drives,	the	more
error	accumulates	in	the	estimate.	For	example,	a	robot	traveling	down	the	middle	of	a
long,	straight	corridor	will	always	have	odometry	that	is	a	gradual	curve.	Put	another	way,
if	both	tires	of	a	differential-drive	robot	are	turned	in	the	same	direction	at	the	exact	same
wheel	velocity,	the	robot	will	never	drive	in	a	truly	straight	line.	This	is	why	mobile	robots
need	additional	sensors	and	clever	algorithms	to	build	maps	and	navigate.

Shaft	encoders	are	also	used	extensively	in	robot	manipulators.	The	vast	majority	of
manipulator	arms	have	at	least	one	shaft	encoder	for	every	rotary	joint,	and	the	vector	of
shaft	encoder	readings	is	often	called	the	manipulator	configuration.	When	combined	with
a	geometric	model	of	each	link	of	a	manipulator	arm,	the	shaft	encoders	allow	higher-level
collision-avoidance,	planning,	and	trajectory-following	algorithms	to	control	the	robot.

Because	the	mobility	and	manipulation	uses	of	shaft	encoders	are	quite	different,	the	ROS
conventions	for	each	use	are	also	quite	different.	Although	the	raw	encoder	counts	may
also	be	reported	by	some	mobile-base	device	drivers,	odometry	estimates	are	most	useful
when	reported	as	a	spatial	transformation	represented	by	a	geometry_msgs/Transform
message.	This	concept	will	be	discussed	at	great	length	throughout	the	book,	but	in
general,	a	spatial	transform	describes	one	frame	of	reference	relative	to	another	frame	of
reference.	In	this	case,	the	odometry	transform	typically	describes	the	shaft	encoder’s
odometric	estimate	relative	to	the	position	of	the	robot	at	power-up,	or	where	its	encoders
were	last	reset.

In	contrast,	the	encoder	readings	for	manipulator	arms	are	typically	broadcast	by	ROS
manipulator	device	drivers	as	sensor_msgs/JointState	messages.	The	JointState
message	contains	vectors	of	angles	in	radians,	and	angular	velocities	in	radians	per
second.	Since	typical	shaft	encoders	have	thousands	of	discrete	states	per	revolution,	the
ROS	device	drivers	for	manipulator	arms	are	required	to	scale	the	encoders	as	needed,
accounting	for	transmissions	and	linkages,	to	produce	a	JointState	vector	with	standard
units.	These	messages	are	used	extensively	by	ROS	software	packages,	as	they	provide	the
minimal	complete	description	of	the	state	of	a	manipulator.

That	about	covers	it	for	the	physical	parts	of	a	robot	system.	We	now	turn	our	attention	to
the	“brains,”	where	the	robot	interprets	sensor	data	and	determines	how	to	move	its	body,



and	where	we’ll	be	spending	most	of	our	time	in	this	book.



Computation
Impressive	robotic	systems	have	been	implemented	on	computing	resources	ranging	from
large	racks	of	servers	down	to	extremely	small	and	efficient	8-bit	microcontrollers.	Fierce
debates	have	raged	throughout	the	history	of	robotics	as	to	exactly	how	much	computer
processing	is	required	to	produce	robust,	useful	robot	behavior.	Insect	brains,	for	example,
are	extremely	small	and	power-efficient,	yet	insects	are	arguably	the	most	successful	life
forms	on	the	planet.	Biological	brains	process	data	very	differently	from	“mainstream”
systems-engineering	approaches	of	human	technology,	which	has	led	to	large	and
sustained	research	projects	that	study	and	try	to	replicate	the	success	of	bio-inspired
computational	architectures.

ROS	takes	a	more	traditional	software-engineering	approach	to	robotic	computational
architecture;	as	described	in	the	first	few	chapters	of	this	book,	ROS	uses	a	dynamic
message-passing	graph	to	pass	data	between	software	nodes,	which	are	typically	isolated
by	the	POSIX	process	model.	This	does	not	come	for	free.	It	certainly	requires	additional
CPU	cycles	to	serialize	a	message	from	one	node,	send	it	over	some	interprocess	or
network	communications	method	to	another	node,	and	deserialize	it	for	another	node.
However,	it	is	our	opinion	that	the	rapid	prototyping	and	software	integration	benefits	of
this	architecture	outweigh	its	computational	overhead.

Because	of	this	messaging	overhead	and	the	emphasis	on	module	isolation,	ROS	is	not
currently	intended	to	run	on	extremely	small	microcontrollers.	ROS	can	be	(and	has	been)
used	to	emulate	and	rapid-prototype	minimalist	processing	paradigms.	Typically,	however,
ROS	is	used	to	build	systems	that	include	considerable	perceptual	input	and	complex
processing	algorithms,	where	its	modular	and	dynamically	extensible	architecture	can
simplify	system	design	and	operation.

ROS	currently	must	run	on	top	of	a	full-featured	operating	system	such	as	Linux	or	Mac
OS	X.	Fortunately,	the	continuing	advance	of	Moore’s	law	and	mass-market	demand	for
battery-powered	devices	has	led	to	ever-smaller	and	more	power-efficient	platforms
capable	of	running	full	operating	systems.	ROS	can	run	on	small-form-factor	embedded
computer	systems	such	as	Gumstix,	Raspberry	Pi,	or	BeagleBone,	among	many	others.
Going	up	the	performance	and	power	curve,	ROS	has	been	widely	used	on	a	large	range
of	laptops,	desktops,	and	servers.	Human-scale	robots	often	carry	one	or	more	standard	PC
motherboards	running	Linux	headless,	which	are	accessed	over	a	network	link.



Complete	Robots
The	previous	section	described	subsystems	commonly	found	on	many	types	of	robots
running	ROS.	Many	of	these	robots	used	in	research	settings	are	custom	built	to
investigate	a	particular	research	problem.	However,	there	are	a	growing	number	of
standard	products	that	can	be	purchased	and	used	“out	of	the	box”	for	research,
development,	and	operations	in	many	domains	of	robotics.	This	section	will	describe
several	of	these	platforms,	which	will	be	used	for	examples	throughout	the	rest	of	the
book.



PR2
The	PR2	robot	was	one	of	the	original	ROS	target	platforms.	In	many	ways,	it	was	the
“ultimate”	research	platform	for	service-robotics	software	at	the	time	of	its	release	in
2010.	Its	mobile	base	is	actuated	by	four	steerable	casters	and	has	a	laser	scanner	for
navigation.	Atop	this	mobile	base,	the	robot	has	a	telescoping	torso	that	carries	two
human-scale	seven-DOF	arms.	The	arms	have	a	unique	passive	mechanical
counterbalance,	which	permits	the	use	of	surprisingly	low-power	motors	for	human-scale
arms.

The	PR2	has	a	pan/tilt	head	equipped	with	a	wide	range	of	sensors,	including	a	“nodding”
laser	scanner	that	can	tilt	up	and	down	independently	of	the	head,	a	pair	of	stereo	cameras
for	short	and	long	distances,	and	a	Kinect	depth	camera.	Additionally,	each	forearm	of	the
robot	has	a	camera,	and	the	gripper	fingertips	have	tactile	sensors.	All	told,	the	PR2	has
two	laser	scanners,	six	cameras,	a	depth	camera,	four	tactile	arrays,	and	1	kHz	encoder
feedback.	All	of	this	data	is	handled	by	a	pair	of	computers	in	the	base	of	the	robot,	with
an	onboard	gigabit	network	connecting	them	to	a	pair	of	WiFi	radios.

All	of	this	functionality	came	at	a	price,	since	the	PR2	was	not	designed	for	low	cost.
When	it	was	commercially	available,	the	PR2	listed	for	about	$400,000.1	Despite	this
financial	hurdle,	its	fully	integrated	“out-of-the-box”	experience	was	a	landmark	for
research	robots	and	is	why	PR2	robots	are	being	actively	used	in	dozens	of	research	labs
around	the	world.	Figure	6-1	shows	a	PR2	running	in	the	Gazebo	simulator.	Simulators
will	be	discussed	later	in	this	chapter.



Figure	6-1.	The	PR2	robot	running	in	the	Gazebo	simulator



Fetch
Fetch	is	a	mobile	manipulation	robot	intended	for	warehouse	applications.	The	design
team	at	Fetch	Robotics,	Inc.	includes	many	of	those	who	designed	the	PR2	robot,	and	in
some	ways	the	Fetch	robot	can	be	seen	as	a	smaller,	more	practical	and	cost-effective
“spiritual	successor”	of	the	PR2.	The	single-arm	robot,	shown	in	Figure	6-2	is	fully	ROS-
based	and	has	a	compact	sensor	head	built	around	a	depth	camera.	The	differential-drive
mobile	base	has	a	laser	scanner	intended	for	navigation	purposes	and	a	telescoping	torso.
At	the	time	of	writing,	the	price	of	the	robot	has	not	been	publicly	released,	but	it	is
expected	to	be	much	more	affordable	than	the	PR2.



Figure	6-2.	The	Fetch	robot	running	in	the	Gazebo	simulator



Robonaut	2
The	NASA/GM	Robonaut	2	(Figure	6-3	is	a	human-scale	robot	designed	with	the	extreme
reliability	and	safety	systems	necessary	for	operation	aboard	the	International	Space
Station.	At	the	time	of	writing,	the	Robonaut	2	(a.k.a	R2)	aboard	the	space	station	is
running	ROS	for	high-level	task	control.	Much	more	information	is	available	at
http://robonaut.jsc.nasa.gov.

http://robonaut.jsc.nasa.gov


Figure	6-3.	The	NASA	R2	robot	running	in	the	Gazebo	simulator



TurtleBot
The	TurtleBot	was	designed	in	2011	as	a	minimalist	platform	for	ROS-based	mobile
robotics	education	and	prototyping.	It	has	a	small	differential-drive	mobile	base	with	an
internal	battery,	power	regulators,	and	charging	contacts.	Atop	this	base	is	a	stack	of	laser-
cut	“shelves”	that	provide	space	to	hold	a	netbook	computer	and	depth	camera,	and	lots	of
open	space	for	prototyping.	To	control	cost,	the	TurtleBot	relies	on	a	depth	camera	for
range	sensing;	it	does	not	have	a	laser	scanner.	Despite	this,	mapping	and	navigation	can
work	quite	well	for	indoor	spaces.	TurtleBots	are	available	from	several	manufacturers	for
less	than	$2,000.	More	information	is	available	at	http://turtlebot.org.

Because	the	shelves	of	the	TurtleBot	(pictured	in	Figure	6-4)	are	covered	with	mounting
holes,	many	owners	have	added	additional	subsystems	to	their	TurtleBots,	such	as	small
manipulator	arms,	additional	sensors,	or	upgraded	computers.	However,	the	“stock”
TurtleBot	is	an	excellent	starting	point	for	indoor	mobile	robotics.	Many	similar	systems
exist	from	other	vendors,	such	as	the	Pioneer	and	Erratic	robots	and	thousands	of	custom-
built	mobile	robots	around	the	world.	The	examples	in	this	book	will	use	the	TurtleBot,
but	any	other	small	differential-drive	platform	could	easily	be	substituted.

http://turtlebot.org


Figure	6-4.	The	TurtleBot	robot	running	in	the	Gazebo	simulator



Simulators
Although	the	preceding	list	of	robots	includes	platforms	that	we	consider	to	be	remarkably
low-cost	compared	to	prior	robots	of	similar	capabilities,	they	are	still	significant
investments.	In	addition,	real	robots	require	logistics	including	lab	space,	recharging	of
batteries,	and	operational	quirks	that	often	become	part	of	the	institutional	knowledge	of
the	organization	operating	the	robot.	Sadly,	even	the	best	robots	break	periodically	due	to
various	combinations	of	operator	error,	environmental	conditions,	manufacturing	or
design	defects,	and	so	on.

Many	of	these	headaches	can	be	avoided	by	using	simulated	robots.	At	first	glance,	this
seems	to	defeat	the	whole	purpose	of	robotics;	after	all,	the	very	definition	of	a	robot
involves	perceiving	and/or	manipulating	the	environment.	Software	robots,	however,	are
extraordinarily	useful.	In	simulation,	we	can	model	as	much	or	as	little	of	reality	as	we
desire.	Sensors	and	actuators	can	be	modeled	as	ideal	devices,	or	they	can	incorporate
various	levels	of	distortion,	errors,	and	unexpected	faults.	Although	data	logs	can	be	used
in	automated	test	suites	to	verify	that	sensing	algorithms	produce	expected	results,
automated	testing	of	control	algorithms	typically	requires	simulated	robots,	since	the
algorithms	under	test	need	to	be	able	to	experience	the	consequences	of	their	actions.

Simulated	robots	are	the	ultimate	low-cost	platforms.	They	are	free!	They	do	not	require
complex	operating	procedures;	you	simply	spawn	a	roslaunch	script	and	wait	a	few
seconds,	and	a	shiny	new	robot	is	created.	At	the	end	of	the	experimental	run,	a	quick
Ctrl-C	and	the	robot	vaporizes.	For	those	of	us	who	have	spent	many	long	nights	with	the
pain	and	suffering	caused	by	operating	real	robots,	the	benefits	of	simulated	robots	are
simply	magical.

Due	to	the	isolation	provided	by	the	messaging	interfaces	of	ROS,	a	vast	majority	of	the
robot’s	software	graph	can	be	run	identically	whether	it	is	controlling	a	real	robot	or	a
simulated	robot.	At	runtime,	as	the	various	nodes	are	launched,	they	simply	find	one
another	and	connect.	Simulation	input	and	output	streams	connect	to	the	graph	in	the	place
of	the	device	drivers	of	the	real	robot.	Although	some	parameter	tuning	is	often	required,
ideally	the	structure	of	the	software	will	be	the	same,	and	often	the	simulation	can	be
modified	to	reduce	the	amount	of	parameter	tweaks	required	when	transitioning	between
simulation	and	reality.

As	alluded	to	in	the	previous	paragraphs,	there	are	many	use	cases	for	simulated	robots,
ranging	from	algorithm	development	to	automated	software	verification.	This	has	led	to
the	creation	of	a	large	number	of	robot	simulators,	many	of	which	integrate	nicely	with
ROS.	The	following	sections	describe	two	simulators	that	will	be	used	in	this	book.



Stage
For	many	years,	the	two-dimensional	simultaneous	localization	and	mapping	(SLAM)
problem	was	one	of	the	most	heavily	researched	topics	in	the	robotics	community.	A
number	of	2D	simulators	were	developed	in	response	to	the	need	for	repeatable
experiments,	as	well	as	the	many	practical	annoyances	of	gathering	long	datasets	of	robots
driving	down	endless	office	corridors.	Canonical	laser	range-finders	and	differential-drive
robots	were	modeled,	often	using	simple	kinematic	models	that	enforce	that,	for	example,
the	robot	stays	plastered	to	a	2D	surface	and	its	range	sensors	only	interact	with	vertical
walls,	creating	worlds	that	vaguely	resemble	that	of	Pac-Man	(see	Figure	6-5).	Although
limited	in	scope,	these	2D	simulators	are	very	fast	computationally,	and	they	are	generally
quite	simple	to	interact	with.

Figure	6-5.	Typical	screenshot	of	the	Stage	simulator

Stage	is	an	excellent	example	of	this	type	of	2D	simulator.	It	has	a	relatively	simple
modeling	language	that	allows	the	creation	of	planar	worlds	with	simple	types	of	objects.
Stage	was	designed	from	the	outset	to	support	multiple	robots	simultaneously	interacting
with	the	same	world.	It	has	been	wrapped	with	a	ROS	integration	package	that	accepts



velocity	commands	from	ROS	and	outputs	an	odometric	transformation	as	well	as	the
simulated	laser	range-finders	from	the	robot(s)	in	the	simulation.



Gazebo
Although	Stage	and	other	2D	simulators	are	computationally	efficient	and	excel	at
simulating	planar	navigation	in	office-like	environments,	it	is	important	to	note	that	planar
navigation	is	only	one	aspect	of	robotics.	Even	when	only	considering	robot	navigation,	a
vast	array	of	environments	require	nonplanar	motion,	ranging	from	outdoor	ground
vehicles	to	aerial,	underwater,	and	space	robotics.	Three-dimensional	simulation	is
necessary	for	software	development	in	these	environments.

In	general,	robot	motions	can	be	divided	into	mobility	and	manipulation.	The	mobility
aspects	can	be	handled	by	two-	or	three-dimensional	simulators	in	which	the	environment
around	the	robot	is	static.	Simulating	manipulation,	however,	requires	a	significant
increase	in	the	complexity	of	the	simulator	to	handle	the	dynamics	of	not	just	the	robot,
but	also	the	dynamic	models	in	the	scene.	For	example,	at	the	moment	that	a	simulated
household	robot	is	picking	up	a	handheld	object,	contact	forces	must	be	computed
between	the	robot,	the	object,	and	the	surface	the	object	was	previously	resting	upon.

Simulators	often	use	rigid-body	dynamics,	in	which	all	objects	are	assumed	to	be
incompressible,	as	if	the	world	were	a	giant	pinball	machine.	This	assumption	drastically
improves	the	computational	performance	of	the	simulator,	but	often	requires	clever	tricks
to	remain	stable	and	realistic,	since	many	rigid-body	interactions	become	point	contacts
that	do	not	accurately	model	the	true	physical	phenomena.	The	art	and	science	of
managing	the	tension	between	computational	performance	and	physical	realism	are	highly
nontrivial.	There	are	many	approaches	to	this	trade-off,	with	many	well	suited	to	some
domains	but	ill	suited	to	others.

Like	all	simulators,	Gazebo	(Figure	6-6)	is	the	product	of	a	variety	of	trade-offs	in	its
design	and	implementation.	Historically,	Gazebo	has	used	the	Open	Dynamics	Engine	for
rigid-body	physics,	but	recently	it	has	gained	the	ability	to	choose	between	physics
engines	at	startup.	For	the	purposes	of	this	book,	we	will	be	using	Gazebo	with	either	the
Open	Dynamics	Engine	or	with	the	Bullet	Physics	library,	both	of	which	are	capable	of
real-time	simulation	with	relatively	simple	worlds	and	robots	and,	with	some	care,	can
produce	physically	plausible	behavior.



Figure	6-6.	Typical	screenshot	of	the	Gazebo	simulator

ROS	integrates	closely	with	Gazebo	through	the	gazebo_ros	package.	This	package
provides	a	Gazebo	plugin	module	that	allows	bidirectional	communication	between
Gazebo	and	ROS.	Simulated	sensor	and	physics	data	can	stream	from	Gazebo	to	ROS,
and	actuator	commands	can	stream	from	ROS	back	to	Gazebo.	In	fact,	by	choosing
consistent	names	and	data	types	for	these	data	streams,	it	is	possible	for	Gazebo	to	exactly
match	the	ROS	API	of	a	robot.	When	this	is	achieved,	all	of	the	robot	software	above	the
device-driver	level	can	be	run	identically	both	on	the	real	robot,	and	(after	parameter
tuning)	in	the	simulator.	This	is	an	enormously	powerful	concept	and	will	be	used
extensively	throughout	this	book.



Other	Simulators
There	are	many	other	simulators	that	can	be	used	with	ROS,	such	as	MORSE	and	V-REP.
Each	simulator,	whether	it	be	Gazebo,	Stage,	MORSE,	V-REP,	turtlesim,	or	any	other,	has
a	different	set	of	trade-offs.	These	include	trade-offs	in	speed,	accuracy,	graphics	quality,
dimensionality	(2D	versus	3D),	types	of	sensors	supported,	usability,	platform	support,
and	so	on.	No	simulator	of	which	we	are	aware	is	capable	of	maximizing	all	of	those
attributes	simultaneously,	so	the	choice	of	the	“right”	simulator	for	a	particular	task	will	be
dependent	on	many	factors.



Summary
In	this	chapter,	we’ve	looked	at	the	subsystems	of	a	typical	robot,	focusing	on	the	types	of
robots	that	ROS	is	most	concerned	with:	mobile	manipulation	platforms.	By	now,	you
should	have	a	pretty	good	idea	of	what	a	robot	looks	like,	and	you	should	be	starting	to
figure	out	how	ROS	might	be	used	to	control	one,	reading	data	from	the	sensors,	figuring
out	how	to	interpret	that	data	and	what	to	do,	and	sending	commands	to	the	acutators	to
make	it	move.

The	next	chapter	ties	together	all	of	the	material	you’ve	already	read	and	shows	you	how
to	write	code	that	will	make	a	robot	wander	around.	As	discussed	in	this	chapter,	all	of	the
code	we	will	write	in	this	book	can	be	targeted	either	at	real	robots	or	at	simulated	robots.
Onward!
1	All	prices	are	approximate,	as	of	the	time	of	writing,	and	quoted	in	US	dollars.





Chapter	7.	Wander-bot

The	first	chapters	of	this	book	introduced	many	of	the	abstract	ROS	concepts	used	for
communication	between	modules,	such	as	topics,	services,	and	actions.	Then,	the	previous
chapter	introduced	many	of	the	sensing	and	actuation	subsystems	commonly	found	in
modern	robots.	In	this	chapter,	we	will	put	these	concepts	together	to	create	a	robot	that
can	wander	around	its	environment.	This	might	not	sound	terribly	earth-shattering,	but
such	a	robot	is	actually	capable	of	doing	meaningful	work:	there	is	an	entire	class	of	tasks
that	are	accomplished	by	driving	across	the	environment.	For	example,	many	vacuuming
or	other	floor-cleaning	tasks	can	be	accomplished	by	cleverly	designed	and	carefully	tuned
algorithms	where	the	robot,	carrying	its	cleaning	tool,	traverses	its	environment	somewhat
randomly.	The	robot	will	eventually	drive	over	all	parts	of	the	environment,	completing	its
task.

In	this	chapter,	we	will	go	step	by	step	through	the	process	of	writing	minimalist	ROS-
based	robot	control	software,	including	creating	a	ROS	package	and	testing	it	in
simulation.



Creating	a	Package
First,	let’s	create	the	workspace	directory	tree,	which	we	will	place	in	~/wanderbot_ws:

user@hostname$	mkdir	-p	~/wanderbot_ws/src

user@hostname$	cd	~wanderbot_ws/src

user@hostname$	catkin_init_workspace

That’s	it!	Next,	it’s	just	one	more	command	to	create	a	package	in	the	new	workspace.	To
create	a	package	called	wanderbot	that	uses	rospy	(the	Python	client	for	ROS)	and	a	few
standard	ROS	message	packages,	we	will	use	the	catkin_create_pkg	command:

user@hostname$	cd	~/wanderbot_ws/src

user@hostname$	catkin_create_pkg	wanderbot	rospy	geometry_msgs	sensor_msgs

The	first	argument,	wanderbot,	is	the	name	of	the	new	package	we	want	to	create.	The
following	arguments	are	the	names	of	packages	that	the	new	package	depends	on.	W	must
include	these	because	the	ROS	build	system	needs	to	know	the	package	dependencies	in
order	to	efficiently	keep	the	builds	up	to	date	when	source	files	change,	and	to	generate
any	required	installation	dependencies	when	packages	are	released.

After	running	the	catkin_create_pkg	command,	there	will	be	a	package	directory	called
wanderbot	inside	the	workspace,	including	the	following	files:

~/wanderbot_ws/src/wanderbot/CMakeLists.txt,	a	starting	point	for	the	build	script	for
this	package

package.xml,	a	machine-readable	description	of	the	package,	including	details	such	as
its	name,	description,	author,	license,	and	which	other	packages	it	depends	on	to	build
and	run

Now	that	we’ve	created	our	wanderbot	package	,	we	can	create	a	minimal	ROS	node
inside	of	it.	In	the	previous	chapters,	we	were	just	sending	generic	messages	between
nodes,	such	as	strings	or	integers.	Now,	we	can	send	something	robot-specific.	The
following	code	will	send	a	stream	of	motion	commands	10	times	per	second,	alternating
every	3	seconds	between	driving	and	stopping.	When	driving,	the	program	will	send
forward	velocity	commands	of	0.5	meters	per	second.	When	stopped,	it	will	send
commands	of	0	meters	per	second.	This	program	is	shown	in	Example	7-1.

Example	7-1.	Red	light!	Green	light!
#!/usr/bin/env	python

import	rospy

from	geometry_msgs.msg	import	Twist

cmd_vel_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)	

rospy.init_node('red_light_green_light')

red_light_twist	=	Twist()	

green_light_twist	=	Twist()

green_light_twist.linear.x	=	0.5	

driving_forward	=	False



light_change_time	=	rospy.Time.now()

rate	=	rospy.Rate(10)

while	not	rospy.is_shutdown():

		if	driving_forward:

				cmd_vel_pub.publish(green_light_twist)	

		else:

				cmd_vel_pub.publish(red_light_twist)

		if	light_change_time	>	rospy.Time.now():	

				driving_forward	=	not	driving_forward

				light_change_time	=	rospy.Time.now()	+	rospy.Duration(3)

		rate.sleep()	

The	queue_size=1	argument	tells	rospy	to	only	buffer	a	single	outbound	message.	In
case	the	node	sending	the	messages	is	transmitting	at	a	higher	rate	than	the	receiving
node(s)	can	receive	them,	rospy	will	simply	drop	any	messages	beyond	the
queue_size.

The	message	constructors	set	all	fields	to	zero.	Therefore,	the	red_light_twist
message	tells	a	robot	to	stop,	since	all	of	its	velocity	subcomponents	are	zero.

The	x	component	of	the	linear	velocity	in	a	Twist	message	is,	by	convention,	aligned
in	the	direction	the	robot	is	facing,	so	this	line	means	“drive	straight	ahead	at	0.5
meters	per	second.”

We	need	to	continually	publish	a	stream	of	velocity	command	messages,	since	most
mobile	base	drivers	will	time	out	and	stop	the	robot	if	they	don’t	receive	at	least
several	messages	per	second.

This	branch	checks	the	system	time	and	toggles	the	red/green	light	periodically.

Without	this	call	to	rospy.sleep()	the	code	would	still	run,	but	it	would	send	far	too
many	messages,	and	take	up	an	entire	CPU	core!

A	lot	of	Example	7-1	is	just	setting	up	the	system	and	its	data	structures.	The	most
important	function	of	this	program	is	to	change	behavior	every	3	seconds	from	driving	to
stopping.	This	is	performed	by	the	three-line	block	reproduced	here,	which	uses
rospy.Time	to	measure	the	duration	since	the	last	change	of	behavior:

		if	light_change_time	>	rospy.Time.now():

				driving_forward	=	not	driving_forward

				light_change_time	=	rospy.Time.now()	+	rospy.Duration(3)

Like	all	Python	scripts,	it	is	convenient	to	make	it	an	executable	so	that	we	can	invoke	the
script	directly	on	the	command	line:

user@hostname$	chmod	+x	red_light_green_light.py

Now,	we	can	use	our	program	to	control	a	simulated	robot.	But	first,	we	need	to	make	sure



that	the	Turtlebot	simulation	stack	is	installed:

user@hostname$	sudo	apt-get	install	ros-indigo-turtlebot-gazebo

We	are	now	ready	to	instantiate	a	Turtlebot	in	the	simulator.	We’ll	use	a	simple	world	to
start,	by	typing	this	in	a	new	terminal	window	(remember	to	hit	the	Tab	key	often	when
typing	ROS	shell	commands	for	autocompletion):

user@hostname$	roslaunch	turtlebot_gazebo	turtlebot_world.launch

Figure	7-1	shows	the	initial	TurtleBot	world,	in	which	a	few	obstacles	are	strewn	about.



Figure	7-1.	The	initial	Turtlebot	world	in	Gazebo

Now,	in	a	different	terminal	window,	let’s	fire	up	our	control	node:

user@hostname$	./red_light_green_light.py	cmd_vel:=cmd_vel_mux/input/teleop

The	cmd_vel	remapping	is	necessary	so	that	we	are	publishing	our	Twist	messages	to	the
topic	that	the	Turtlebot	software	stack	is	expecting.	Although	we	could	have	declared	our
cmd_vel_pub	to	publish	to	this	topic	in	the	red_light_green_light.py	source	code,	our	usual
goal	is	to	write	ROS	nodes	that	are	as	generic	as	possible,	and	in	this	case,	we	can	easily
remap	cmd_vel	to	whatever	is	required	by	any	robot’s	software	stack.

When	red_light_green_light.py	is	running,	you	should	now	see	a	Turtlebot	alternating
every	second	between	driving	forward	and	stopping.	Progress!	When	you	are	bored	with
it,	just	give	a	Ctrl-C	to	the	newly	created	node	as	well	as	the	TurtleBot	simulation.



Reading	Sensor	Data
Blindly	driving	around	is	fun,	but	we	typically	want	robots	to	use	sensor	data.	Fortunately,
streaming	sensor	data	into	ROS	nodes	is	quite	easy.	Whenever	we	want	to	receive	a	topic
in	ROS,	it’s	often	helpful	to	first	just	echo	it	to	the	console,	to	make	sure	that	it	is	actually
being	published	under	the	topic	name	we	expect	and	to	confirm	that	we	understand	the
data	type.

In	the	case	of	Turtlebot,	we	want	to	see	something	like	a	laser	scan:	a	linear	vector	of
ranges	from	the	robot	to	the	nearest	obstacles	in	various	directions.	To	save	on	cost,	sadly,
the	Turtlebot	does	not	have	a	real	laser	scanner.	It	does,	however,	have	a	Kinect	depth
camera,	and	the	Turtlebot	software	stack	extracts	the	middle	few	rows	of	the	Kinect’s
depth	image,	does	a	bit	of	filtering,	and	then	publishes	the	data	as
sensor_msgs/LaserScan	messages	on	the	scan	topic.	This	means	that	from	the	standpoint
of	the	high-level	software,	the	data	shows	up	exactly	like	“real”	laser	scans	on	more
expensive	robots.	The	only	difference	is	that	the	field	of	view	is	just	narrower,	and	the
maximum	detectable	range	is	quite	a	bit	shorter	than	with	typical	laser	scanners.	To
illustrate	this	difference	in	field	of	view,	compare	the	Gazebo	simulation	rendering	shown
in	Figure	7-2	to	the	actual	simulated	laser-scanner	stream	shown	in	Figure	7-3.	Although
the	Turtlebot	is	able	to	perceive	the	obstacle	directly	in	front	of	it,	the	obstacle	on	its	right
side	is	mostly	out	of	view.	Such	are	the	trade-offs	involved	with	using	low-cost	depth
cameras	as	navigation	sensors!

To	start	using	the	sensor	data,	we	can	just	dump	the	scan	topic	to	the	console	to	verify	that
the	simulated	laser	scanner	is	working.	First,	fire	up	a	Turtlebot	simulation,	if	one	isn’t
already	running:

user@hostname$	roslaunch	turtlebot_gazebo	turtlebot_world.launch

Then,	in	another	console,	use	rostopic	to	echo	the	topic:

user@hostname$	rostopic	echo	scan



Figure	7-2.	A	bird’s-eye	Gazebo	view	of	a	Turtlebot	in	front	of	two	obstacles

This	will	print	a	continuous	stream	of	text	representing	the	LaserScan	messages.	When
you’re	bored,	press	Ctrl-C	to	stop	it.	Most	of	the	text	is	the	ranges	member	of	the
LaserScan	message,	which	is	exactly	what	we	are	interested	in:	the	ranges	array	contains
the	range	from	the	Turtlebot	to	the	nearest	object	at	bearings	easily	computed	from	the
ranges	array	index.	Specifically,	if	the	message	instance	is	named	msg,	we	can	compute
the	bearing	for	a	particular	range	estimate	as	follows,	where	i	is	the	index	into	the	ranges
array:

bearing	=	msg.angle_min	+	i	*	msg.angle_max	/	len(msg.ranges)

To	retrieve	the	range	to	the	nearest	obstacle	directly	in	front	of	the	robot,	we	will	select	the
middle	element	of	the	ranges	array:

range_ahead	=	msg.ranges[len(msg.ranges)/2]

Or,	to	return	the	range	of	the	closest	obstacle	detected	by	the	scanner:

closest_range	=	min(msg.ranges)



Figure	7-3.	A	bird’s-eye	view	of	the	same	scene	as	Figure	7-2,	rendering	the	simulated	laser	scan	extracted	from	the
simulated	Kinect	data	of	the	Turtlebot	—	the	object	directly	in	front	of	the	robot	is	visible,	but	the	object	to	its	right	is

mostly	out	of	view

This	signal	chain	is	deceptively	complex:	we	are	picking	out	elements	of	an	emulated
laser	scan,	which	is	itself	produced	by	picking	out	a	few	of	the	middle	rows	of	the
Turtlebot’s	Kinect	depth	camera,	which	is	itself	generated	in	Gazebo	by	backprojecting
rays	into	a	simulated	environment!	It’s	hard	to	overemphasize	the	utility	of	simulation	for
robot	software	development.

Example	7-2	is	a	complete	ROS	node	that	prints	the	distance	to	an	obstacle	directly	in
front	of	the	robot.

Example	7-2.	range_ahead.py
#!/usr/bin/env	python

import	rospy

from	sensor_msgs.msg	import	LaserScan

def	scan_callback(msg):

		range_ahead	=	msg.ranges[len(msg.ranges)/2]

		print	"range	ahead:	%0.1f"	%	range_ahead

rospy.init_node('range_ahead')

scan_sub	=	rospy.Subscriber('scan',	LaserScan,	scan_callback)

rospy.spin()

This	little	program	shows	how	easy	it	is	to	connect	to	data	streams	in	ROS	and	process
them	in	Python.	The	scan_callback()	function	is	called	each	time	a	new	message	arrives
on	the	scan	topic.	This	callback	function	then	prints	the	range	measured	to	the	object
directly	in	front	of	the	robot	by	picking	the	middle	element	of	the	ranges	field	of	the



LaserScan	message:

def	scan_callback(msg):

		range_ahead	=	msg.ranges[len(msg.ranges)/2]

		print	"range	ahead:	%0.1f"	%	range_ahead

We	can	experiment	with	this	program	in	Gazebo	by	dragging	and	rotating	the	Turtlebot
around	in	the	world.	Click	the	Move	icon	in	the	Gazebo	toolbar	to	enter	Move	mode,	and
then	click	and	drag	the	Turtlebot	around	the	scene.	The	terminal	running	range_ahead.py
will	print	a	continually	changing	stream	of	numbers	indicating	the	range	(in	meters)	from
the	Turtlebot	to	the	nearest	obstacle	(if	any)	directly	in	front	of	it.

Gazebo	also	has	a	Rotate	tool	that	will	(by	default)	rotate	a	model	about	its	vertical	axis.
Both	the	Move	and	Rotate	tools	will	immediately	affect	the	output	of	the	range_ahead.py
program,	since	the	simulation	(by	default)	stays	running	while	models	are	being	dragged
and	rotated.



Sensing	and	Actuation:	Wander-bot!
We	have	now	written	red_light_green_light.py,	which	causes	Turtlebot	to	drive	open-loop,
and	range_ahead.py,	which	uses	the	Turtlebot’s	sensors	to	estimate	the	range	to	the
nearest	object	directly	in	front	of	the	Turtlebot.	We	can	put	these	two	capabilities	together
and	write	wander.py,	shown	in	Example	7-3,	which	will	cause	the	Turtlebot	to	drive
straight	ahead	until	it	sees	an	obstacle	within	0.8	meters	or	times	out	after	30	seconds.
Then,	the	Turtlebot	will	stop	and	spin	to	a	new	heading.	It	will	continue	doing	those	two
things	until	the	end	of	time	or	Ctrl-C,	whichever	comes	first.

Example	7-3.	wander.py
#!/usr/bin/env	python

import	rospy

from	geometry_msgs.msg	import	Twist

from	sensor_msgs.msg	import	LaserScan

def	scan_callback(msg):

		global	g_range_ahead

		g_range_ahead	=	min(msg.ranges)

g_range_ahead	=	1	#	anything	to	start

scan_sub	=	rospy.Subscriber('scan',	LaserScan,	scan_callback)

cmd_vel_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)

rospy.init_node('wander')

state_change_time	=	rospy.Time.now()

driving_forward	=	True

rate	=	rospy.Rate(10)

while	not	rospy.is_shutdown():

		if	driving_forward:

				if	(g_range_ahead	<	0.8	or	rospy.Time.now()	>	state_change_time):

						driving_forward	=	False

						state_change_time	=	rospy.Time.now()	+	rospy.Duration(5)

		else:	#	we're	not	driving_forward

				if	rospy.Time.now()	>	state_change_time:

						driving_forward	=	True	#	we're	done	spinning,	time	to	go	forward!

						state_change_time	=	rospy.Time.now()	+	rospy.Duration(30)

		twist	=	Twist()

		if	driving_forward:

				twist.linear.x	=	1

		else:

				twist.angular.z	=	1

		cmd_vel_pub.publish(twist)

		rate.sleep()

As	will	always	be	the	case	with	ROS	Python	programs,	we	start	by	importing	rospy	and
the	ROS	message	types	we’ll	need:	the	Twist	and	LaserScan	messages.	Since	this
program	is	so	simple,	we’ll	just	use	a	global	variable	called	g_range_ahead	to	store	the
minimum	range	that	our	(simulated)	laser	scanner	detects	in	front	of	the	robot.	This	makes
the	scan_callback()	function	very	simple;	it	just	copies	out	the	range	to	our	global
variable.	And	yes,	this	is	horrible	programming	practice	in	complex	programs,	but	for	this
small	example,	we’ll	pretend	it’s	OK.

We	start	the	actual	program	by	creating	a	subscriber	to	scan	and	a	publisher	to	cmd_vel,	as
we	did	previously.	We	also	set	up	two	variables	that	we’ll	use	in	our	controller	logic:
state_change_time	and	driving_forward.	The	rate	variable	is	a	helpful	construct	in
rospy:	it	helps	create	loops	that	run	at	a	fixed	frequency.	In	this	case,	we’d	like	to	run	our
controller	at	10	Hz,	so	we	construct	a	rospy.Rate	object	by	passing	10	to	its	constructor.



Then,	we	call	rate.sleep()	at	the	end	of	our	main	loop;	each	time	through,	rospy	will
adjust	the	amount	of	actual	sleeping	time	so	that	we	run	at	something	close	to	10	Hz	on
average.	The	actual	amount	of	sleeping	time	will	depend	on	what	else	is	being	done	in	the
control	loop	and	the	speed	of	the	computer;	we	can	just	call	rospy.Rate.sleep()	and	not
worry	about	it.

The	actual	control	loop	is	kept	as	simple	as	possible.	The	robot	is	in	one	of	two	states:
driving_forward	or	not	driving_forward.	When	in	the	driving_forward	state,	the
robot	keeps	driving	until	it	either	sees	an	obstacle	within	0.8	meters	or	times	out	after	30
seconds,	after	which	it	transitions	to	the	not	driving_forward	state:

				if	(g_range_ahead	<	0.8	or	rospy.Time.now()	>	state_change_time):

						driving_forward	=	False

						state_change_time	=	rospy.Time.now()	+	rospy.Duration(5)

When	the	robot	is	in	the	not	driving_forward	state,	it	simply	spins	in	place	for	five
seconds,	then	transitions	back	to	the	driving_forward	state:

				if	rospy.Time.now()	>	state_change_time:

						driving_forward	=	True	#	we're	done	spinning,	time	to	go	forward!

						state_change_time	=	rospy.Time.now()	+	rospy.Duration(30)

As	before,	we	can	quickly	test	our	program	in	a	Turtlebot	simulation.	Let’s	start	one	up:

user@hostname$	roslaunch	turtlebot_gazebo	turtlebot_world.launch

Then,	in	a	separate	console,	we	can	make	wander.py	executable	and	run	it:

user@hostname$	chmod	+x	red_light_green_light.py

user@hostname$	./wander.py	cmd_vel:=cmd_vel_mux/input/teleop

The	TurtleBot	will	wander	around	aimlessly,	while	avoiding	collisions	with	obstacles	it
can	see.	Hooray!



Summary
In	this	chapter,	we	first	created	an	open-loop	control	system	in	red_light_green_light.py
that	started	and	stopped	the	Turtlebot	based	on	a	simple	timer.	Then,	we	saw	how	to	read
the	information	from	the	Turtlebot’s	depth	camera.	Finally,	we	closed	the	loop	between
sensing	and	actuation	by	creating	Wander-bot,	a	program	that	causes	the	Turtlebot	to	avoid
obstacles	and	randomly	wander	around	its	environment.	This	brought	together	all	of	the
aspects	of	the	book	thus	far:	the	streaming	data	transport	mechanisms	of	ROS,	the
discussion	of	robot	sensors	and	actuators,	and	the	simulation	framework	of	Gazebo.	In	the
next	chapter,	we	will	start	making	things	more	complex	by	listening	to	user	input,	as	we
create	Teleop-bot.



Part	II.	Moving	Around	Using	ROS





Chapter	8.	Teleop-bot

The	previous	section	covered	fundamental	concepts	in	ROS,	provided	a	brief	overview	of
subsystems	common	to	many	robots,	and	finished	with	Wander-bot,	a	program	that	drove
a	Turtlebot	around	aimlessly.	In	this	section	of	the	book,	we	will	show	how	to	build	a
series	of	robots	that	become	more	and	more	sophisticated	in	their	motions,	culminating
with	a	state-of-the-art	2D	navigation	system.	We	will	then	conclude	this	section	by
showing	how	to	move	manipulator	arms	using	common	ROS	packages.

This	chapter	will	describe	how	to	drive	a	robot	around	via	teleoperation.	Although	the
term	“robot”	often	brings	up	images	of	fully	autonomous	robots	that	are	able	to	make	their
own	decisions	in	all	situations,	there	are	many	domains	in	which	close	human	guidance	is
standard	practice	due	to	a	variety	of	factors.	Since	teleoperated	systems	are,	generally
speaking,	simpler	than	autonomous	systems,	they	make	a	natural	starting	point.	In	this
chapter,	we	will	construct	progressively	more	complex	teleoperation	systems.

As	discussed	in	the	previous	chapter,	we	drive	a	Turtlebot	by	publishing	a	stream	of	Twist
messages.	Although	the	Twist	message	has	the	ability	to	describe	full	3D	motion,	when
operating	differential-drive	planar	robots,	we	only	need	to	populate	two	members:	the
linear	(forward/backward)	velocity,	and	the	angular	velocity	about	the	vertical	axis,	which
can	also	be	called	yaw	rate	and	is	simply	the	measure	of	how	quickly	the	robot	is
spinning.	From	those	two	fields,	it	is	then	an	exercise	in	trigonometry	to	compute	the
required	wheel	velocities	of	the	robot	as	a	function	of	the	spacing	of	the	wheels	and	their
diameter.	This	calculation	is	usually	done	at	low	levels	in	the	software	stack,	either	in	the
robot’s	device	driver	or	in	the	firmware	of	a	microcontroller	onboard	the	robot.	From	the
teleoperation	software’s	perspective,	we	simply	command	the	linear	and	angular	velocities
in	meters	per	second	and	radians	per	second,	respectively.

Given	that	we	need	to	produce	a	stream	of	velocity	commands	to	move	the	robot,	the	next
question	is,	how	can	we	elicit	these	commands	from	the	robot	operator?	There	are	a	wide
variety	of	approaches	to	this	problem,	and	naturally	we	should	start	with	the	simplest
approach	to	program:	keyboard	input.



Development	Pattern
Throughout	the	remainder	of	the	book,	we	will	encourage	a	development	pattern	that
makes	use	of	the	ROS	debugging	tools	wherever	possible.	Since	ROS	is	a	distributed
system	with	topic-based	communications,	we	can	quickly	create	testing	environments	to
help	our	debugging,	so	that	we	are	only	starting	and	stopping	a	single	piece	of	the	system
every	time	we	need	to	tweak	a	bit	of	code.	Structuring	our	software	as	a	collection	of	very
small	message-passing	programs	makes	it	easier	and	more	productive	to	insert	ROS
debugging	tools	into	these	message	flows.

In	the	specific	case	of	producing	Teleop-bot	velocity	commands,	we	will	write	two
programs:	one	that	listens	for	keystrokes	and	then	broadcasts	them	as	ROS	messages,	and
one	that	listens	for	those	keystroke	ROS	messages	and	outputs	Twist	messages	in
response.	This	extra	layer	of	indirection	helps	isolate	the	two	functional	pieces	of	this
system,	as	well	as	making	it	easier	for	us,	or	anyone	else	in	the	open	source	community,	to
reuse	the	individual	pieces	in	a	completely	different	system.	Creating	a	constellation	of
small	ROS	nodes	often	will	simplify	the	creation	of	manual	and	(especially)	automated
software	tests.	For	example,	we	can	feed	a	canned	sequence	of	keystroke	messages	to	the
node	that	translates	between	keystrokes	and	motion	commands,	comparing	the	output
motion	command	with	the	previously	defined	“correct”	response.	Then,	we	can	set	up
automated	testing	to	verify	the	correct	behavior	as	the	software	evolves	over	time.

Once	we	have	decided	the	highest-level	breakdown	of	how	a	task	should	be	split	into	ROS
nodes,	the	next	task	is	to	write	them!	As	is	often	the	case	with	software	design,	sometimes
it	helps	to	create	a	skeleton	of	the	desired	system	that	prints	console	messages	or	just
publishes	dummy	messages	to	other	nodes	in	the	system.	However,	our	preferred	approach
is	to	build	the	required	collection	of	new	ROS	nodes	incrementally,	with	a	strong
preference	for	writing	small	nodes.



Keyboard	Driver
The	first	node	we	need	to	write	for	keyboard-Teleop-bot	is	a	keyboard	driver	that	listens
for	keystrokes	and	publishes	them	as	std_msgs/String	messages	on	the	keys	topic.	There
are	many	ways	to	perform	this	task.	Example	8-1	uses	the	Python	termios	and	tty
libraries	to	place	the	terminal	in	raw	mode	and	capture	keystrokes,	which	are	then
published	as	std_msgs/String	messages.

Example	8-1.	key_publisher.py
#!/usr/bin/env	python

import	sys,	select,	tty,	termios

import	rospy

from	std_msgs.msg	import	String

if	__name__	==	'__main__':

		key_pub	=	rospy.Publisher('keys',	String,	queue_size=1)

		rospy.init_node("keyboard_driver")

		rate	=	rospy.Rate(100)

		old_attr	=	termios.tcgetattr(sys.stdin)

		tty.setcbreak(sys.stdin.fileno())

		print	"Publishing	keystrokes.	Press	Ctrl-C	to	exit…"

		while	not	rospy.is_shutdown():

				if	select.select([sys.stdin],	[],	[],	0)[0]	==	[sys.stdin]:

						key_pub.publish(sys.stdin.read(1))

				rate.sleep()

		termios.tcsetattr(sys.stdin,	termios.TCSADRAIN,	old_attr)

This	program	uses	the	termios	library	to	capture	raw	keystrokes,	which	requires	working
around	some	quirks	of	how	Unix	consoles	operate.	Typically,	consoles	buffer	an	entire
line	of	text,	only	sending	it	to	programs	when	the	user	presses	Enter.	In	our	case,	we	want
to	receive	the	keys	on	our	program’s	standard	input	stream	as	soon	as	they	are	pressed.	To
alter	this	behavior	of	the	console,	we	first	need	to	save	the	attributes:

		old_attr	=	termios.tcgetattr(sys.stdin)

		tty.setcbreak(sys.stdin.fileno())

Now,	we	can	continually	poll	the	stdin	stream	to	see	if	any	characters	are	ready.	Although
we	could	simply	block	on	stdin,	that	would	cause	our	process	to	not	fire	any	ROS
callbacks,	should	we	add	any	in	the	future.	Thus,	it	is	good	practice	to	instead	call
select()	with	a	timeout	of	zero,	which	will	return	immediately.	We	will	then	spend	the
rest	of	our	loop	time	inside	rate.sleep(),	as	shown	in	this	snippet:

				if	select.select([sys.stdin],	[],	[],	0)[0]	==	[sys.stdin]:

						key_pub.publish(sys.stdin.read(1))

				rate.sleep()

Finally,	we	need	to	put	the	console	back	into	standard	mode	before	our	program	exits:

		termios.tcsetattr(sys.stdin,	termios.TCSADRAIN,	old_attr)

To	test	if	the	keyboard	driver	node	is	operating	as	expected,	three	terminals	are	needed.	In
the	first	terminal,	run	roscore.	In	the	second	terminal,	run	the	key_publisher.py	node.	In
the	third	terminal,	run	rostopic	echo	keys,	which	will	print	any	and	all	messages	that	it



receives	on	the	keys	topic	to	the	console.	Then,	set	focus	back	to	the	second	terminal	by
clicking	on	it	or	using	window	manager	shortcuts	such	as	Alt-Tab	to	switch	between
terminals.	Keystrokes	in	the	second	terminal	should	cause	std_msgs/String	messages	to
print	to	the	console	of	the	third	terminal.	Progress!	When	you’re	finished	testing,	press
Ctrl-C	in	all	terminals	to	shut	everything	down.

You’ll	notice	that	“normal”	keys,	such	as	letters,	numerals,	and	simple	punctuation,	work
as	expected.	However,	“extended”	keys,	such	as	the	arrow	keys,	result	in
std_msgs/String	messages	that	are	either	weird	symbols	or	multiple	messages	(or	both).
That	is	expected,	since	our	minimalist	key_publisher.py	node	is	just	pulling	characters
one	at	a	time	from	stdin	—	and	improving	key_publisher.py	is	an	exercise	left	to	the
motivated	reader!	For	the	remainder	of	this	chapter,	we	will	use	just	alphabetic	characters.



Motion	Generator
In	this	section,	we	will	use	the	common	keyboard	mapping	of	w,	x,	a,	d,	s	to	express,
respectively,	that	we	want	the	robot	to	go	forward,	go	backward,	turn	left,	turn	right,	and
stop.

As	a	first	attempt	at	this	problem,	we’ll	make	a	ROS	node	that	outputs	a	Twist	message
every	time	it	receives	a	std_msgs/String	message	that	starts	with	a	character	it
understands,	as	shown	in	Example	8-2.

Example	8-2.	keys_to_twist.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	String

from	geometry_msgs.msg	import	Twist

key_mapping	=	{	'w':	[	0,	1],	'x':	[0,	-1],

																'a':	[-1,	0],	'd':	[1,		0],

																's':	[	0,	0]	}

def	keys_cb(msg,	twist_pub):

		if	len(msg.data)	==	0	or	not	key_mapping.has_key(msg.data[0]):

				return	#	unknown	key

		vels	=	key_mapping[msg.data[0]]

		t	=	Twist()

		t.angular.z	=	vels[0]

		t.linear.x		=	vels[1]

		twist_pub.publish(t)

if	__name__	==	'__main__':

		rospy.init_node('keys_to_twist')

		twist_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)

		rospy.Subscriber('keys',	String,	keys_cb,	twist_pub)

		rospy.spin()

This	program	uses	a	Python	dictionary	to	store	the	mapping	between	keystrokes	and	the
target	velocities:

key_mapping	=	{	'w':	[	0,	1],	'x':	[0,	-1],

																'a':	[-1,	0],	'd':	[1,		0],

																's':	[	0,	0]	}

In	the	callback	function	for	the	keys	topic,	incoming	keys	are	looked	up	in	this	dictionary.
If	a	key	is	found,	the	target	velocities	are	extracted	from	the	dictionary:

		if	len(msg.data)	==	0	or	not	key_mapping.has_key(msg.data[0]):

				return	#	unknown	key

		vels	=	key_mapping[msg.data[0]]

In	an	effort	to	prevent	runaway	robots,	most	robot	device	drivers	will	automatically	stop
the	robot	if	no	messages	are	received	in	a	few	hundred	milliseconds.	The	program	in	the
previous	listing	would	work,	but	only	if	it	had	a	continual	stream	of	keypresses	to
continually	generate	Twist	messages	for	the	robot	driver.	That	would	be	exciting	for	a	few
seconds,	but	once	the	euphoria	of	“Hey,	the	robot	is	moving!”	wears	off,	we’ll	be
searching	for	improvements!

Issues	such	as	robot	firmware	timeouts	can	be	tricky	to	debug.	As	with	everything	in	ROS



(and	complex	systems	in	general),	the	key	for	debugging	is	to	find	ways	to	divide	the
system	into	smaller	pieces	and	discover	where	the	problem	lies.	The	rostopic	tool	can
help	in	several	ways.	As	in	the	previous	section,	start	three	terminals:	one	with	roscore,
one	with	key_publisher.py,	and	one	with	keys_to_twist.py.	Then,	we	can	start	a	fourth
terminal	for	various	incantations	of	rostopic.

First,	we	can	see	what	topics	are	available:

user@hostname$	rostopic	list

This	provides	the	following	output:

/cmd_vel

/keys

/rosout

/rosout_agg

The	last	two	items,	/rosout	and	/rosout_agg,	are	part	of	the	general-purpose	ROS
logging	scheme	and	are	always	there.	The	other	two,	cmd_vel	and	keys,	are	what	our
programs	are	publishing.	Now,	let’s	dump	the	cmd_vel	data	stream	to	the	console:

user@hostname$	rostopic	echo	cmd_vel

Each	time	a	valid	key	is	pressed	in	the	console	with	key_publisher.py,	the	rostopic
console	should	print	the	contents	of	the	resulting	Twist	message	published	by
keys_to_twist.py.	Progress!	As	always	with	ROS	console	tools,	simply	press	Ctrl-C	to
exit.	Next,	let’s	use	rostopic	hz	to	compute	the	average	rate	of	messages:

user@hostname$	rostopic	hz	cmd_vel

The	rostopic	hz	command	will	compute	an	average	of	the	rate	of	messages	on	a	topic
every	second	and	print	those	estimates	to	the	console.	With	keys_to_twist.py,	this
estimate	will	almost	always	be	zero,	with	minor	bumps	up	and	down	each	time	a	key	is
pressed	in	the	keyboard	driver	console.

TIP
The	rostopic	tools	are	your	friends!	Virtually	every	ROS	programming	and	(especially)	debugging	session
includes	some	usage	of	rostopic	to	rapidly	introspect	the	system	and	verify	that	data	is	flowing	as
expected.

To	make	this	node	useful	for	robots	that	require	a	steady	stream	of	velocity	commands,	we
will	output	a	Twist	message	every	100	milliseconds,	or	at	a	rate	of	10	Hz,	by	simply
repeating	the	last	motion	command	if	a	new	key	was	not	pressed.	Although	we	could	do
something	like	this	by	using	a	sleep(0.1)	call	in	the	while	loop,	this	would	only	ensure
that	the	loop	runs	no	faster	than	10	Hz;	the	timing	results	would	likely	have	quite	a	bit	of
variance	since	the	scheduling	and	execution	time	of	the	loop	itself	are	not	taken	into



account.	Because	computers	have	widely	varying	clock	speeds	and	overall	computational
performance,	the	exact	amount	of	CPU	time	that	a	loop	would	need	to	sleep	to	maintain	a
particular	update	rate	is	not	knowable	ahead	of	time.	Looping	tasks	are	thus	better
accomplished	with	the	ROS	rate	construct,	which	continually	estimates	the	time	spent
processing	the	loop	to	obtain	more	consistent	results,	as	shown	in	Example	8-3.

Example	8-3.	keys_to_twist_using_rate.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	String

from	geometry_msgs.msg	import	Twist

key_mapping	=	{	'w':	[	0,	1],	'x':	[0,	-1],

																'a':	[-1,	0],	'd':	[1,		0],

																's':	[	0,	0]	}

g_last_twist	=	None

def	keys_cb(msg,	twist_pub):

		global	g_last_twist

		if	len(msg.data)	==	0	or	not	key_mapping.has_key(msg.data[0]):

				return	#	unknown	key

		vels	=	key_mapping[msg.data[0]]

		g_last_twist.angular.z	=	vels[0]

		g_last_twist.linear.x		=	vels[1]

		twist_pub.publish(g_last_twist)

if	__name__	==	'__main__':

		rospy.init_node('keys_to_twist')

		twist_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)

		rospy.Subscriber('keys',	String,	keys_cb,	twist_pub)

		rate	=	rospy.Rate(10)

		g_last_twist	=	Twist()	#	initializes	to	zero

		while	not	rospy.is_shutdown():

				twist_pub.publish(g_last_twist)

				rate.sleep()

Now,	when	the	keys_to_twist_using_rate.py	node	is	running,	we	will	see	a	quite
consistent	10	Hz	message	stream	when	we	run	rostopic	hz	cmd_vel.	This	can	be	seen
using	a	separate	console	running	rostopic	echo	cmd_vel,	as	in	the	previous	section.	The
key	difference	between	this	program	and	the	previous	one	is	the	use	of	rospy.Rate():

		rate	=	rospy.Rate(10)

		g_last_twist	=	Twist()	#	initializes	to	zero

		while	not	rospy.is_shutdown():

				twist_pub.publish(g_last_twist)

				rate.sleep()

When	debugging	low-dimensional	data,	such	as	the	velocity	commands	sent	to	a	robot,	it
is	often	useful	to	plot	the	data	stream	as	a	time	series.	ROS	provides	a	command-line	tool
called	rqt_plot	that	can	accept	any	numerical	data	message	stream	and	plot	it	graphically
in	real	time.

To	create	an	rqt_plot	visualization,	we	need	to	send	rqt_plot	the	exact	message	field
that	we	want	to	see	plotted.	To	find	this	field	name,	we	can	use	several	methods.	The
simplest	is	to	look	at	the	output	of	rostopic	echo.	This	is	always	printed	in	YAML,	a
simple	whitespace-based	markup	format.	For	example,	rostopic	echo	cmd_vel	will	print
a	series	of	records	of	this	format:



linear:

		x:	0.0

		y:	0.0

		z:	0.0

angular:

		x:	0.0

		y:	0.0

		z:	0.0

Nested	structures	are	indicated	by	whitespace:	first,	the	linear	field	structure	has	field
names	x,	y,	z;	this	is	followed	by	the	angular	field	structure,	with	the	same	members.

Alternatively,	we	can	discover	the	topic	data	type	using	rostopic:

user@hostname$	rostopic	info	cmd_vel

This	will	print	quite	a	bit	of	information	about	the	topic	publishers	and	subscribers,	as	well
as	stating	that	the	cmd_vel	topic	is	of	type	geometry_msgs/Twist.	With	this	data	type
name,	we	can	use	the	rosmsg	command	to	print	the	structure:

user@hostname$	rosmsg	show	geometry_msgs/Twist

geometry_msgs/Vector3	linear

		float64	x

		float64	y

		float64	z

geometry_msgs/Vector3	angular

		float64	x

		float64	y

		float64	z

This	console	output	shows	us	that	the	linear	and	angular	members	of	the	Twist	message
are	of	type	geometry_msgs/Vector3,	which	has	fields	named	x,	y,	and	z.	Granted,	we
already	knew	that	from	the	rostopic	echo	output,	but	rosmsg	show	is	sometimes	a	useful
way	of	obtaining	this	information	when	we	don’t	have	a	data	stream	available	to	print	to
the	console.

Now	that	we	know	the	topic	name	and	the	names	of	the	fields,	we	can	generate	streaming
plots	of	the	linear	velocity	that	we	are	publishing	by	using	slashes	to	descend	into	the
message	structure	and	select	the	fields	of	interest.	As	mentioned	previously,	for	planar
differential-drive	robots,	the	only	nonzero	fields	in	the	Twist	message	will	be	the	x-axis
linear	(forward/backward)	velocity	and	the	z-axis	(yaw)	angular	velocity.	We	can	start
streaming	those	fields	to	a	plot	with	a	single	command:

user@hostname$	rqt_plot	cmd_vel/linear/x	cmd_vel/angular/z

This	plot	will	look	something	like	Figure	8-1	as	keys	are	pressed	and	the	stream	of
velocity	commands	changes.



Figure	8-1.	A	live	plot	rendered	by	rqt_plot	that	shows	the	linear	and	angular	velocity	commands	over	time

We	now	have	a	pipeline	built	where	pressing	letters	on	the	keyboard	will	send	velocity
commands	to	a	robot,	and	we	can	view	those	velocities	in	a	live	plot.	That’s	great!	But
there’s	a	lot	of	room	for	improvement.	First,	notice	in	the	previous	plot	that	our	velocities
are	always	either	0,	–1,	or	+1.	ROS	uses	SI	units	throughout,	which	means	that	we	are
asking	our	robot	to	drive	forward	and	backward	at	one	meter	per	second	and	turn	at	one
radian	per	second.	Unfortunately,	robots	run	at	greatly	varying	speeds	in	different
applications:	for	a	robotic	car,	one	meter	per	second	is	very	slow;	however,	for	a	small
indoor	robot	navigating	a	corridor,	one	meter	per	second	is	actually	quite	fast.	We	need	a
way	to	parameterize	this	program,	so	that	it	can	be	used	with	multiple	robots.	We’ll	do
that	in	the	next	section.



Parameter	Server
We	can	improve	the	keys_to_twist_using_rate.py	program	by	using	ROS	parameters	to
specify	the	linear	and	angular	velocity	scales.	Of	course,	there	are	countless	ways	that	we
can	give	parameters	to	programs.	When	developing	robotic	systems,	it	is	often	useful	to
set	parameters	in	a	variety	of	ways:	at	the	command	line	when	debugging,	in	roslaunch
files,	from	graphical	interfaces,	from	other	ROS	nodes,	or	even	in	separate	parameter	files
to	cleanly	define	behavior	for	multiple	platforms	or	environments.	The	ROS	master,	often
called	roscore,	includes	a	parameter	server	that	can	be	read	or	written	by	all	ROS	nodes
and	command-line	tools.	The	parameter	server	can	support	quite	sophisticated
interactions,	but	for	our	purposes	in	this	chapter,	we	will	only	be	setting	parameters	at	the
command	line	when	running	our	teleoperation	nodes.

The	parameter	server	is	a	generic	key/value	store.	There	are	many	strategies	for	how	to
name	parameters,	but	for	our	teleoperation	node,	we	want	a	private	parameter	name.	In
ROS,	a	private	parameter	name	is	still	publicly	accessible;	the	notion	of	“private”	simply
means	that	its	full	name	is	formed	by	appending	the	parameter	name	to	the	node’s	name.
This	ensures	that	no	name	clashes	can	occur,	because	node	names	are	always	unique	(see
“Names,	Namespaces,	and	Remapping”).	For	example,	if	our	node	name	is
keys_to_twist,	we	can	have	private	parameters	named	keys_to_twist/linear_scale
and	keys_to_twist/angular_scale.

To	set	private	parameters	on	the	command	line	at	the	time	the	node	is	launched,	prepend
the	parameter	name	with	an	underscore	and	set	its	value	using	:=	syntax,	as	follows:

./keys_to_twist_parameterized.py	_linear_scale:=0.5	_angular_scale:=0.4

This	would	set	the	keys_to_twist/linear_scale	parameter	to	0.5	and	the
keys_to_twist/angular_scale	parameter	to	0.4,	immediately	before	the	node	is
launched.	These	parameter	values	are	then	returned	by	the	has_param()	and	get_param()
calls,	as	shown	in	Example	8-4.

Example	8-4.	keys_to_twist_parameterized.py
#!/usr/bin/env	python

import	rospy

from	std_msgs.msg	import	String

from	geometry_msgs.msg	import	Twist

key_mapping	=	{	'w':	[	0,	1],	'x':	[0,	-1],

																'a':	[-1,	0],	'd':	[1,		0],

																's':	[	0,	0]	}

g_last_twist	=	None

g_vel_scales	=	[0.1,	0.1]	#	default	to	very	slow

def	keys_cb(msg,	twist_pub):

		global	g_last_twist,	g_vel_scales

		if	len(msg.data)	==	0	or	not	key_mapping.has_key(msg.data[0]):

				return	#	unknown	key

		vels	=	key_mapping[msg.data[0]]

		g_last_twist.angular.z	=	vels[0]	*	g_vel_scales[0]

		g_last_twist.linear.x		=	vels[1]	*	g_vel_scales[1]

		twist_pub.publish(g_last_twist)



if	__name__	==	'__main__':

		rospy.init_node('keys_to_twist')

		twist_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)

		rospy.Subscriber('keys',	String,	keys_cb,	twist_pub)

		g_last_twist	=	Twist()	#	initializes	to	zero

		if	rospy.has_param('~linear_scale'):

				g_vel_scales[1]	=	rospy.get_param('~linear_scale')

		else:

				rospy.logwarn("linear	scale	not	provided;	using	%.1f"	%\

																		g_vel_scales[1])

		if	rospy.has_param('~angular_scale'):

				g_vel_scales[0]	=	rospy.get_param('~angular_scale')

		else:

				rospy.logwarn("angular	scale	not	provided;	using	%.1f"	%\

																		g_vel_scales[0])

		rate	=	rospy.Rate(10)

		while	not	rospy.is_shutdown():

				twist_pub.publish(g_last_twist)

				rate.sleep()

At	startup,	this	program	queries	the	parameter	server	using	rospy.has_param()	and
rospy.get_param(),	and	outputs	a	warning	if	the	specified	parameter	was	not	set:

		if	rospy.has_param('~linear_scale'):

				g_vel_scales[1]	=	rospy.get_param('~linear_scale')

		else:

				rospy.logwarn("linear	scale	not	provided;	using	%.1f"	%\

																		g_vel_scales[1])

This	warning	is	printed	using	the	ROS	logging	system,	which	has	a	few	benefits	over	a
standard	Python	print()	call.	First,	the	ROS	logging	calls,	such	as	logwarn(),
loginfo(),	and	logerror(),	print	colorized	text	to	the	console.	That	may	sound
inconsequential,	but	it	actually	can	be	quite	useful	when	watching	or	scrolling	for
warnings	or	errors	in	a	noisy	console	stream.	The	ROS	logging	calls	can	also	(optionally)
be	routed	to	a	centralized	console	of	warnings	and	errors,	so	that	the	warning	and	error
streams	from	large,	complex	collections	of	nodes	can	be	monitored	more	easily.

The	warning	text	produced	by	rospy.logwarn()	also	prepends	a	timestamp:

[WARN]	[WallTime:	1429164125.989]	linear	scale	not	provided.	Defaulting	to	0.1

[WARN]	[WallTime:	1429164125.989]	angular	scale	not	provided.	Defaulting	to	0.1

The	get_param()	function	optionally	accepts	a	second	parameter,	serving	as	a	default
parameter	when	the	parameter	key	is	not	available	on	the	parameter	server.	In	many	cases,
using	this	optional	second	parameter	can	shorten	code	and	provides	an	appropriate	level	of
functionality.	For	general-purpose	nodes	such	as	keys_to_twist.py	that	want	a	parameter
to	be	explicitly	defined,	however,	using	has_param()	to	determine	the	existence	of	an
explicit	parameter	definition	can	be	useful.

The	syntax	to	use	keys_to_twist_parameterized.py	with	explicit	command-line
parameters	is	as	follows:

./keys_to_twist_parameterized.py	_linear_scale:=0.5	_angular_scale:=0.4



The	resulting	stream	of	Twist	messages	is	scaled	as	expected:	for	example,	pressing	w
(move	forward)	in	the	console	running	key_publisher.py	will	result	in	a	stream	of	these
messages	appearing	in	the	rostopic	echo	cmd_vel	output:

linear:

		x:	0.5

		y:	0.0

		z:	0.0

angular:

		x:	0.0

		y:	0.0

		z:	0.0

Each	time	we	launch	keys_to_twist_parameterized.py,	we	can	specify	the	desired
maximum	velocities	for	our	robot.	Even	more	conveniently,	we	can	put	these	parameters
into	launch	files	so	that	we	don’t	have	to	remember	them!	But	first,	we	need	to	deal	with
the	physics	problem	of	finite	acceleration,	which	we	will	address	in	the	next	section.



Velocity	Ramps
Unfortunately,	like	all	objects	with	mass,	robots	cannot	start	and	stop	instantaneously.
Physics	dictates	that	robots	accelerate	gradually	over	time.	As	a	result,	when	a	robot’s
wheel	motors	try	to	instantly	jump	to	a	wildly	different	velocity,	typically	something	bad
happens,	such	as	skidding,	belts	slipping,	“shuddering”	as	the	robot	repeatedly	hits
electrical	current	limits,	or	possibly	even	something	breaking	in	the	mechanical	driveline.
To	avoid	these	problems,	we	should	ramp	our	motion	commands	up	and	down	over	a
finite	amount	of	time.	Often	lower	levels	of	robot	firmware	will	enforce	this,	but	in
general,	it’s	considered	good	practice	not	to	send	impossible	commands	to	robots.
Example	8-5	applies	ramps	to	the	outgoing	velocity	stream,	to	limit	the	instantaneous
accelerations	that	we	are	asking	of	the	motors.

Example	8-5.	keys_to_twist_with_ramps.py
#!/usr/bin/env	python

import	rospy

import	math

from	std_msgs.msg	import	String

from	geometry_msgs.msg	import	Twist

key_mapping	=	{	'w':	[	0,	1],	'x':	[	0,	-1],

																'a':	[	1,	0],	'd':	[-1,		0],

																's':	[	0,	0]	}

g_twist_pub	=	None

g_target_twist	=	None

g_last_twist	=	None

g_last_send_time	=	None

g_vel_scales	=	[0.1,	0.1]	#	default	to	very	slow

g_vel_ramps	=	[1,	1]	#	units:	meters	per	second^2

def	ramped_vel(v_prev,	v_target,	t_prev,	t_now,	ramp_rate):

		#	compute	maximum	velocity	step

		step	=	ramp_rate	*	(t_now	-	t_prev).to_sec()

		sign	=	1.0	if	(v_target	>	v_prev)	else	-1.0

		error	=	math.fabs(v_target	-	v_prev)

		if	error	<	step:	#	we	can	get	there	within	this	timestep-we're	done.

				return	v_target

		else:

				return	v_prev	+	sign	*	step		#	take	a	step	toward	the	target

def	ramped_twist(prev,	target,	t_prev,	t_now,	ramps):

		tw	=	Twist()

		tw.angular.z	=	ramped_vel(prev.angular.z,	target.angular.z,	t_prev,

																												t_now,	ramps[0])

		tw.linear.x	=	ramped_vel(prev.linear.x,	target.linear.x,	t_prev,

																											t_now,	ramps[1])

		return	tw

def	send_twist():

		global	g_last_twist_send_time,	g_target_twist,	g_last_twist,\

									g_vel_scales,	g_vel_ramps,	g_twist_pub

		t_now	=	rospy.Time.now()

		g_last_twist	=	ramped_twist(g_last_twist,	g_target_twist,

																														g_last_twist_send_time,	t_now,	g_vel_ramps)

		g_last_twist_send_time	=	t_now

		g_twist_pub.publish(g_last_twist)

def	keys_cb(msg):

		global	g_target_twist,	g_last_twist,	g_vel_scales

		if	len(msg.data)	==	0	or	not	key_mapping.has_key(msg.data[0]):

				return	#	unknown	key

		vels	=	key_mapping[msg.data[0]]

		g_target_twist.angular.z	=	vels[0]	*	g_vel_scales[0]

		g_target_twist.linear.x		=	vels[1]	*	g_vel_scales[1]

def	fetch_param(name,	default):



		if	rospy.has_param(name):

				return	rospy.get_param(name)

		else:

				print	"parameter	[%s]	not	defined.	Defaulting	to	%.3f"	%	(name,	default)

				return	default

if	__name__	==	'__main__':

		rospy.init_node('keys_to_twist')

		g_last_twist_send_time	=	rospy.Time.now()

		g_twist_pub	=	rospy.Publisher('cmd_vel',	Twist,	queue_size=1)

		rospy.Subscriber('keys',	String,	keys_cb)

		g_target_twist	=	Twist()	#	initializes	to	zero

		g_last_twist	=	Twist()

		g_vel_scales[0]	=	fetch_param('~angular_scale',	0.1)

		g_vel_scales[1]	=	fetch_param('~linear_scale',	0.1)

		g_vel_ramps[0]	=	fetch_param('~angular_accel',	1.0)

		g_vel_ramps[1]	=	fetch_param('~linear_accel',	1.0)

		rate	=	rospy.Rate(20)

		while	not	rospy.is_shutdown():

				send_twist()

				rate.sleep()

The	code	is	a	bit	more	complex,	but	the	main	lines	of	interest	are	in	the	ramped_vel()
function,	where	the	velocity	is	computed	under	the	acceleration	constraint	provided	as	a
parameter.	Each	time	it	is	called,	this	function	takes	a	step	toward	the	target	velocity,	or,	if
the	target	velocity	is	within	one	step	away,	it	goes	directly	to	it:

def	ramped_vel(v_prev,	v_target,	t_prev,	t_now,	ramp_rate):

		#	compute	maximum	velocity	step

		step	=	ramp_rate	*	(t_now	-	t_prev).to_sec()

		sign	=	1.0	if	(v_target	>	v_prev)	else	-1.0

		error	=	math.fabs(v_target	-	v_prev)

		if	error	<	step:	#	we	can	get	there	within	this	timestep-we're	done.

				return	v_target

		else:

				return	v_prev	+	sign	*	step		#	take	a	step	toward	the	target

At	the	command	line,	the	following	incantation	of	our	teleop	program	will	produce
reasonable	behavior	for	the	Turtlebot:

user@hostname$	./keys_to_twist_with_ramps.py	_linear_scale:=0.5\

				_angular_scale:=1.0_linear_accel:=1.0	_angular_accel:=1.0

The	motion	commands	we	are	sending	the	Turtlebot	are	now	physically	possible	to
achieve,	as	shown	in	Figure	8-2,	since	they	take	nonzero	time	to	ramp	up	and	down.	Using
the	rqt_plot	program	as	shown	previously,	we	can	generate	a	live	plot	of	the	system:

user@hostname$	rqt_plot	cmd_vel/linear/x	cmd_vel/angular/z



Figure	8-2.	The	velocity	commands	in	this	plot	ramp	up	and	down	over	finite	time,	allowing	this	trajectory	to	be
physically	achievable

To	reiterate:	even	if	we	were	to	give	instantaneously	changing	or	“step”	commands	to	the
Turtlebot,	somewhere	in	the	signal	path,	or	in	the	physics	of	the	mechanical	system,	the
step	commands	would	be	slowed	into	ramps.	The	advantage	to	doing	this	in	higher-level
software	is	that	there	is	simply	more	visibility	into	what	is	happening,	and	hence	a	better
understanding	of	the	behavior	of	the	system.



Let’s	Drive!
Now	that	we	have	reasonable	Twist	messages	streaming	from	our	teleop	program	over	the
cmd_vel	topic,	we	can	drive	some	robots.	Let’s	start	by	driving	a	Turtlebot.	Thanks	to	the
magic	of	robot	simulation,	we	can	get	a	Turtlebot	up	and	running	with	a	single	command:

user@hostname$	roslaunch	turtlebot_gazebo	turtlebot_world.launch

This	will	launch	a	Gazebo	instance	with	a	world	similar	to	that	shown	in	Figure	8-3,	as
well	as	emulating	the	software	and	firmware	of	the	Turtlebot	behind	the	scenes.

Figure	8-3.	A	snapshot	of	a	simulated	Turtlebot	in	front	of	a	bookcase	in	the	Gazebo	simulator

Next,	we	want	to	run	our	teleop	program,	which	broadcasts	Twist	messages	on	the
cmd_vel	topic:

user@hostname$	./keys_to_twist_with_ramps.py	

However,	if	we	do	this,	it	won’t	work!	Why?	Because	the	Turtlebot	looks	for	its	Twist
motion	messages	on	a	different	topic.	This	is	an	extremely	common	problem	to	debug	in
distributed	robotic	software	systems,	or	in	any	large	software	system,	for	that	matter.	We
will	describe	a	variety	of	tools	for	debugging	these	types	of	problems	in	a	later	chapter.
For	now,	however,	to	make	the	Turtlebot	simulator	work,	we	need	to	publish	Twist
messages	to	a	topic	named	cmd_vel_mux/input/teleop.	That	is,	we	need	to	remap	our
cmd_vel	message	so	that	they	are	published	on	that	topic	instead.	We	can	use	the	ROS



remapping	syntax	to	do	this	on	the	command	line,	without	changing	our	source	code:

user@hostname$	./keys_to_twist_with_ramps.py	cmd_vel:=cmd_vel_mux/input/teleop

We	can	now	drive	the	Turtlebot	around	in	Gazebo	using	the	w,	a,	s,	d,	x	buttons	on	the
keyboard.	Hooray!

This	style	of	teleoperation	is	similar	to	how	remote-controlled	cars	work:	the	teleoperator
maintains	line-of-sight	with	the	robot,	sends	motion	commands,	observes	how	they	affect
the	robot	and	its	environment,	and	reacts	accordingly.	However,	it	is	often	impossible	or
undesirable	to	maintain	line-of-sight	contact	with	the	robot.	This	requires	the	teleoperator
to	visualize	the	robot’s	sensors	and	see	the	world	through	the	“eyes”	of	the	robot.	ROS
provides	several	tools	to	simplify	development	of	such	systems,	including	rviz,	which
will	be	described	in	the	following	section.



rviz
rviz	stands	for	ROS	visualization.	It	is	a	general-purpose	3D	visualization	environment
for	robots,	sensors,	and	algorithms.	Like	most	ROS	tools,	it	can	be	used	for	any	robot	and
rapidly	configured	for	a	particular	application.	For	teleoperation,	we	want	to	be	able	to	see
the	camera	feed	of	the	robot.	First,	we	will	start	from	the	configuration	described	in	the
previous	section,	where	we	have	four	terminals	open:	one	for	roscore,	one	for	the
keyboard	driver,	one	for	keys_to_teleop_with_rates.py,	and	one	that	ran	a	roslaunch
script	to	bring	up	Gazebo	and	a	simulated	TurtleBot.	Now,	we’ll	need	a	fifth	console	to
run	rviz,	which	is	in	its	own	package,	also	called	rviz	:

user@hostname$	rosrun	rviz	rviz

rviz	can	plot	a	variety	of	data	types	streaming	through	a	typical	ROS	system,	with	heavy
emphasis	on	the	three-dimensional	nature	of	the	data.	In	ROS,	all	forms	of	data	are
attached	to	a	frame	of	reference.	For	example,	the	camera	on	a	Turtlebot	is	attached	to	a
reference	frame	defined	relative	to	the	center	of	the	Turtlebot’s	mobile	base.	The	odometry
reference	frame,	often	called	odom,	is	taken	by	convention	to	have	its	origin	at	the	location
where	the	robot	was	powered	on,	or	where	its	odometers	were	most	recently	reset.	Each	of
these	frames	can	be	useful	for	teleoperation,	but	it	is	often	desirable	to	have	a	“chase”
perspective,	which	is	immediately	behind	the	robot	and	looking	over	its	“shoulders.”	This
is	because	simply	viewing	the	robot’s	camera	frame	can	be	deceiving	—	the	field	of	view
of	a	camera	is	often	much	narrower	than	we	are	used	to	as	humans,	and	thus	it	is	easy	for
teleoperators	to	bonk	the	robot’s	shoulders	when	turning	corners.	A	sample	view	of	rviz
configured	to	generate	a	chase	perspective	is	shown	in	Figure	8-4.	Observing	the	sensor
data	in	the	same	3D	view	as	a	rendering	of	the	robot’s	geometry	can	make	teleoperation
more	intuitive.

Like	many	complex	graphical	user	interfaces	(GUIs),	rviz	has	a	number	of	panels	and
plugins	that	can	be	configured	as	needed	for	a	given	task.	Configuring	rviz	can	take	some
time	and	effort,	so	the	state	of	the	visualization	can	be	saved	to	configuration	files	for	later
reuse.	Additionally,	when	closing	rviz,	by	default	the	program	will	save	its	configuration
to	a	special	local	file;	the	next	time	rviz	is	run,	it	will	then	instantiate	and	configure	the
same	panels	and	plugins.

The	default,	unconfigured	rviz	window	will	appear	as	shown	in	Figure	8-5.	It	can	be
disconcerting	at	first,	since	there	is	nothing	there!	In	the	next	few	pages,	we	will	show
how	to	add	various	streams	to	rviz	to	end	up	with	the	visualization	shown	in	Figure	8-4.

The	first	task	is	to	choose	the	frame	of	reference	for	the	visualization.	In	our	case,	we	want
a	visualization	perspective	that	is	attached	to	the	robot,	so	we	can	follow	the	robot	as	it
drives	around.	On	any	given	robot,	there	are	many	possible	frames	of	reference,	such	as
the	center	of	the	mobile	base,	various	links	of	the	robot’s	structure,	or	even	a	wheel	(note
that	this	frame	would	continually	flip	around	and	around,	making	it	rather	dizzying	as	a



vantage	point	for	rviz).	For	the	purposes	of	teleoperation,	we	will	select	a	frame	of
reference	attached	to	the	optical	center	of	the	Kinect	depth	camera	on	the	Turtlebot.	To	do
this,	click	in	the	table	cell	to	the	right	of	the	“Fixed	Frame”	row	in	the	upper-left	panel	of
rviz.	This	will	pop	up	the	menu	shown	in	the	following	screenshot,	which	contains	all
transform	frames	currently	broadcasting	in	this	ROS	system.	For	now,	select
camera_depth_frame	in	the	pop-up	menu,	as	shown	in	Figure	8-6.	Selecting	the	fixed
frame	for	visualization	is	one	of	the	most	important	configuration	steps	of	rviz.

Figure	8-4.	rviz	configured	to	render	the	Turtlebot	geometry	as	well	as	its	depth	camera	and	2D	image	data



Figure	8-5.	The	initial	state	of	rviz,	before	any	visualization	panels	have	been	added	to	the	configuration

Figure	8-6.	The	fixed	frame	pop-up	menu



Next,	we	want	to	view	the	3D	model	of	the	robot.	To	accomplish	this,	we	will	insert	an
instance	of	the	robot	model	plugin.	Although	the	Turtlebot	has	no	moving	parts	(other	than
its	wheels)	that	we	need	to	visualize,	it	is	still	useful	to	see	a	rendering	of	the	robot	to
improve	situational	awareness	and	a	get	sense	of	scale	for	teleoperation.	To	add	the	robot
model	to	the	rviz	scene,	click	the	“Add”	button	on	the	lefthand	side	of	the	rviz	window,
approximately	halfway	down.	This	will	bring	up	a	dialog	box,	shown	in	Figure	8-7,	that
contains	all	of	the	available	rviz	plugins	for	various	data	types.

Figure	8-7.	rviz	dialog	box	used	to	select	the	data	type	that	is	currently	being	added	to	the	visualization

From	this	dialog	box,	select	“RobotModel”	and	then	click	“OK”.	Plugin	instances	appear
in	the	tree-view	control	at	the	left	of	the	rviz	window.	To	configure	a	plugin,	ensure	it	is
expanded	in	the	tree	view.	Its	configurable	parameters	can	then	be	edited.	For	the	Robot
Model	plugin,	the	only	configuration	typically	required	is	to	enter	the	name	of	the	robot
model	on	the	parameter	server.	However,	since	the	ROS	convention	is	for	this	to	be	called



robot_description,	this	is	autofilled	and	typically	“just	works”	for	single-robot
applications.	This	will	produce	an	rviz	visualization	similar	to	that	shown	in	Figure	8-8,
which	is	centered	on	a	model	of	the	Turtlebot.

Figure	8-8.	A	Turtlebot	model	added	to	rviz

In	order	to	teleoperate	the	Turtlebot	reasonably,	we	need	to	plot	its	sensors.	To	plot	the
depth	image	from	the	Kinect	camera	on	the	Turtlebot,	click	“Add”	and	then	select
“PointCloud2”	from	the	plugin	dialog	box,	near	the	lower-left	corner	of	rviz.	The
PointCloud2	plugin	has	quite	a	few	options	to	configure	in	the	tree-view	control	in	the	left
pane	of	rviz.	Most	importantly,	we	need	to	tell	the	plugin	which	topic	should	be	plotted.
Click	the	space	to	the	right	of	the	“Topic”	label,	and	a	drop-down	box	will	appear,
showing	the	PointCloud2	topics	currently	visible	on	the	system.	Select
/camera/depth/points,	and	the	Turtlebot’s	point	cloud	should	be	visible,	as	shown	in
Figure	8-9.

The	Kinect	camera	on	the	Turtlebot	also	produces	a	color	image	output,	in	addition	to	its
depth	image.	Sometimes	it	can	be	useful	for	teleoperation	to	render	both	the	image	and	the
point	cloud.	rviz	provides	a	plugin	for	this.	Click	“Add”	near	the	lower-left	corner	of
rviz,	and	then	select	“Image”	from	the	plugin	dialog	box.	As	usual,	this	will	instantiate
the	plugin,	and	now	we	need	to	configure	it.	Click	on	the	whitespace	to	the	right	of	the
“Image	Topic”	label	of	the	Image	plugin	property	tree,	and	then	select
/camera/rgb/image_raw.	The	camera	stream	from	the	Turtlebot	should	then	be	plotted	in
the	left	pane	of	rviz,	as	shown	in	Figure	8-10.



Figure	8-9.	The	Turtlebot’s	depth	camera	data	has	been	added	to	the	visualization

Figure	8-10.	The	camera	image	in	the	lower-left	corner	has	been	added	to	the	visualization,	allowing	teleoperators	to
see	the	first-person	perspective	as	well	as	the	third-person	perspective	of	the	main	window

The	rviz	interface	is	panelized	and	thus	can	be	easily	modified	to	suit	the	needs	of	the
application.	For	example,	we	can	drag	the	Image	panel	to	the	righthand	column	of	the
rviz	window	and	resize	it	so	that	the	depth	image	and	camera	image	are	similarly	sized.



We	can	then	rotate	the	3D	visualization	so	that	it	is	looking	at	the	point	cloud	data	from
the	side,	which	could	be	useful	in	some	situations.	An	example	panel	configuration	is
shown	in	Figure	8-11.

Figure	8-11.	rviz	panels	can	be	dragged	around	to	create	different	arrangements	—	here,	the	left	panel	has	the	third-
person	renderings	of	the	depth	camera	data,	and	the	visual	camera	is	shown	in	the	right	panel

Alternatively,	we	can	rotate	the	3D	scene	so	that	it	has	a	top-down	perspective,	which	can
be	useful	for	driving	in	tight	quarters.	An	example	of	this	“bird’s-eye”	perspective	is
shown	in	Figure	8-12.

These	examples	just	scratch	the	surface	of	what	rviz	can	do!	It	is	an	extremely	flexible
tool	that	we	will	use	throughout	the	remainder	of	the	book.



Figure	8-12.	Rotating	the	perspective	of	the	3D	view	to	create	a	“bird’s	eye”	view	of	the	environment



Summary
This	chapter	developed	a	progressively	more	complex	keyboard-based	teleoperation
scheme	and	then	showed	how	to	connect	the	resulting	motion	commands	to	a	Turtlebot.
Finally,	this	chapter	introduced	rviz	and	showed	how	to	quickly	configure	rviz	to	render
point	cloud	and	camera	data,	to	create	a	teleoperation	interface	for	a	mobile	robot.

Although	teleoperated	robots	have	many	important	applications,	it	is	often	more
convenient	or	economical	for	robots	to	drive	themselves.	In	the	next	chapter,	we	will
describe	one	approach	for	building	2D	maps,	which	is	a	necessary	step	for	robots	to	start
driving	themselves.





Chapter	9.	Building	Maps	of	the	World

Now	that	you	know	how	ROS	works	and	have	moved	your	robot	around	a	bit,	it’s	time	to
start	looking	at	how	to	get	it	to	navigate	around	the	world	on	its	own.	In	order	to	do	this,
the	robot	needs	to	know	where	it	is,	and	where	you	want	it	to	go	to.	Typically,	this	means
that	it	needs	to	have	a	map	of	the	world	and	to	know	where	it	is	in	this	map.	In	this
chapter,	we’re	going	to	see	how	to	build	a	high-quality	map	of	the	world,	using	data	from
your	robot’s	sensors.	We’ll	then	use	these	maps	in	the	next	chapter	when	we	talk	about
how	to	make	the	robot	move	about	in	the	world.

If	your	robot	had	perfect	sensors	and	knew	exactly	how	it	was	moving,	then	building	a
map	would	be	simple:	you	could	take	the	objects	detected	by	the	sensors,	transform	them
into	some	global	coordinate	frame	(using	the	robot’s	position	and	some	geometry),	and
then	record	them	in	a	map	(in	this	global	coordinate	frame).	Unfortunately,	in	the	real
world,	it’s	not	quite	that	easy.	The	robot	doesn’t	know	exactly	how	it’s	moving,	since	it’s
interacting	with	an	uncertain	world.	No	sensor	is	perfect,	and	you’ll	have	to	deal	with
noisy	measurements.	How	can	you	combine	all	this	error-laden	information	together	to
produce	a	usable	map?

Luckily,	ROS	has	a	set	of	tools	that	will	do	this	for	you.	The	tools	are	based	on	some	quite
advanced	mathematics,	but,	luckily,	you	don’t	have	to	understand	everything	that’s	going
on	under	the	hood	in	order	to	use	them.	We’ll	describe	these	tools	in	this	chapter,	but	first
let’s	talk	a	bit	about	exactly	what	we	mean	by	“map.”



Maps	in	ROS
Navigation	maps	in	ROS	are	represented	by	a	2D	grid,	where	each	grid	cell	contains	a
value	that	corresponds	to	how	likely	it	is	to	be	occupied.	Figure	9-1	shows	an	example	of
a	map	learned	directly	from	the	sensor	data	on	a	robot.	White	is	open	space,	black	is
occupied,	and	the	grayish	color	is	unknown.

Figure	9-1.	An	example	of	a	map	used	by	ROS

Map	files	are	stored	as	images,	with	a	variety	of	common	formats	being	supported	(such
as	PNG,	JPG,	and	PGM).	Although	color	images	can	be	used,	they	are	converted	to
grayscale	images	before	being	interpreted	by	ROS.	This	means	that	maps	can	be	displayed
with	any	image	display	program.	Associated	with	each	map	is	a	YAML	file	that	holds
additional	information,	such	as	the	resolution	(the	length	of	each	grid	cell	in	meters),
where	the	origin	of	the	map	is,	and	thresholds	for	deciding	if	a	cell	is	occupied	or
unoccupied.	Example	9-1	shows	an	example	of	a	map	YAML	file.

Example	9-1.	map.yaml
image:	map.pgm

resolution:	0.1

origin:	[0.0,	0.0,	0.0]

occupied_thresh:	0.65

free_thresh:	0.196

negate:	1



NOTE
It’s	worth	pointing	out	that	images	and	maps	have	different	coordinate	frames	and	conventions	associated
with	them.	Images	are	indexed	from	the	top	left,	with	the	y-axis	going	down	the	image,	and	store	integer
values,	often	from	0	to	255.	High	values	(such	as	255)	correspond	to	white,	and	low	values	(such	as	0)
correspond	to	black.	Maps,	on	the	other	hand,	can	have	an	arbitrary	origin,	specified	in	the	YAML	file.
Since	maps	are	probabilistic	representations	of	the	world,	high	values	correspond	to	something	being	there,
and	low	values	correspond	to	empty	space.	Since	we’re	used	to	using	paper,	most	people	associate	black
with	something	there	and	white	with	nothing	there	when	using	a	map.

As	with	many	things	in	ROS,	most	of	the	time,	you	won’t	need	to	think	about	this.	However,	if	you’re
going	to	be	directly	editing	your	maps	in	an	image	editor,	then	it	really	helps	to	understand	the	differences
between	the	image	file	format	and	the	map	that	it	represents.

This	map	is	stored	in	the	file	map.png,	has	cells	that	represent	10	cm	squares	of	the	world,
and	has	an	origin	at	(0,	0,	0).	A	cell	is	considered	to	be	occupied	if	the	value	in	it	is	more
than	65%	of	the	total	range	allowed	by	the	image	format.	A	cell	is	unoccupied	if	it	has	a
value	less	than	19.6%	of	the	allowable	range.	This	means	that	occupied	cells	will	have	a
large	value	and	will	appear	lighter	in	color	in	the	image.	Unoccupied	cells	will	have	a
lower	value	and	would	appear	darker.	Since	it	is	more	intuitive	for	open	space	to	be
represented	by	white	and	occupied	space	by	black,	the	negate	flag	allows	for	the	values	in
the	cells	to	be	inverted	before	being	used	by	ROS.	So,	for	Example	9-1,	if	we	assume	that
each	cell	holds	a	single	unsigned	byte	(an	integer	from	0	to	255),	each	of	the	values	will
first	be	inverted	by	subtracting	the	original	value	from	255.	Then,	all	cells	with	a	value
less	that	49	(255	*	0.196	=	49.98)	will	be	considered	free,	and	all	those	with	a	value
greater	than	165	(255	*	0.65	=	165.75)	will	be	considered	to	be	occupied.	All	other	cells
will	be	classified	as	“unknown.”	These	classifications	will	be	used	by	ROS	when	we	try	to
plan	a	path	through	this	map	for	the	robot	to	follow.

Since	maps	are	represented	as	image	files,	you	can	edit	them	in	your	favorite	image	editor.
This	allows	you	to	tidy	up	any	maps	that	you	create	from	sensor	data,	removing	things	that
shouldn’t	be	there,	or	adding	in	fake	obstacles	to	influence	path	planning.	A	common	use
of	this	is	to	stop	the	robot	from	planning	paths	through	certain	areas	of	the	map	by,	for
example,	drawing	a	line	across	a	corridor	you	don’t	want	to	the	robot	to	drive	through,	as
you	can	see	in	Figure	9-2.	The	navigation	system	(which	we’ll	talk	about	in	the	next
chapter)	will	not	be	able	to	plan	a	path	through	these	lines.	This	allows	you	to	control
where	the	robot	can	and	cannot	go	as	it	wanders	around	the	world.



Figure	9-2.	A	hand-modified	map	—	black	lines	were	added	to	stop	the	robot	from	planning	paths	down	the	corridor	in
the	middle	of	the	map

Before	we	start	to	talk	about	how	we’re	going	to	build	maps	in	ROS,	we’re	going	to	take	a
short	detour	to	talk	about	rosbag.	This	is	a	tool	that	allows	you	to	record	and	replay
published	messages	and	is	especially	useful	when	building	large	maps	of	the	world.



Recording	Data	with	rosbag
rosbag	is	a	tool	that	lets	us	record	messages	and	replay	them	later.	This	is	really	useful
when	debugging	new	algorithms,	since	it	lets	you	present	the	same	data	to	the	algorithm
over	and	over,	which	will	help	you	isolate	and	fix	bugs.	It	also	allows	you	to	develop
algorithms	without	having	to	use	a	robot	all	the	time.	You	can	record	some	sensor	data
from	the	robot	with	rosbag,	then	use	this	recorded	data	to	work	on	your	code.	rosbag	can
do	more	than	record	and	play	back	data,	but	that’s	what	we’re	going	to	focus	on	for	now.

To	record	messages,	we	use	the	record	functionality	and	a	list	of	topic	names.	For
example,	to	record	all	the	messages	sent	over	the	scan	and	tf	topics,	you	would	run:

user@hostname$	rosbag	record	scan	tf

This	will	save	all	of	the	messages	in	a	file	with	a	name	in	the	format	YYYY-MM-DD-HH-
mm-ss.bag,	corresponding	to	the	time	that	rosbag	was	run.	This	should	give	each	bag	file
a	unique	name,	assuming	you	don’t	run	rosbag	more	than	once	a	second.	You	can	change
the	name	of	the	output	file	using	the	-O	or	--output-name	flags,	and	add	a	prefix	with	the
-o	and	--output-prefix	flags.	For	example,	these	commands:

user@hostname$	rosbag	record	-O	foo.bag	scan	tf

user@hostname$	rosbag	record	-o	foo	scan	tf

would	create	bags	named	foo.bag	and	foo_2015-10-05-14-29-30.bag,	respectively
(obviously,	with	appropriate	values	for	the	current	date	and	time).	We	can	also	record	all
of	the	topics	that	are	currently	publishing	with	the	-a	flag:

user@hostname$	rosbag	record	-a

While	this	is	often	useful,	it	can	also	record	a	lot	of	data,	especially	on	robots	with	a	lot	of
sensors,	like	the	PR2.	There	are	also	flags	that	let	you	record	topics	that	match	a	regular
expression,	which	are	described	in	detail	on	the	rosbag	wiki	page.	rosbag	will	record	data
until	you	stop	it	with	a	Ctrl-C.

You	can	play	back	a	pre-recorded	bag	file	with	the	play	functionality.	There	are	a	number
of	command-line	parameters	that	allow	you	to	manipulate	how	fast	you	play	back	the	bag,
where	you	start	in	the	file,	and	other	things	(all	of	which	are	documented	on	the	wiki),	but
the	basic	usage	is	straightforward:

user@hostname$	rosbag	play	--clock	foo.bag

This	will	replay	the	messages	recorded	in	the	bag	file	foo.bag,	as	if	they	were	being
generated	live	from	ROS	nodes.	Giving	more	than	one	bag	file	name	will	result	in	the	bag
files	being	played	sequentially.	The	--clock	flag	causes	rosbag	to	publish	the	clock	time,
which	will	be	important	when	we	come	to	build	our	maps.

http://wiki.ros.org/rosbag?distro=indigo


WARNING
The	--clock	flag	will	cause	rosbag	to	publish	the	clock	time	from	when	the	bag	was	recorded.	If
something	else	is	also	publishing	time,	such	as	the	Gazebo	simulator,	this	can	cause	a	lot	of	problems.	If
two	sources	are	publishing	(different)	times,	then	time	will	appear	to	jump	around,	and	this	will	confuse	the
mapping	algorithm	(and	possibly	many	other	nodes).	When	you’re	using	rosbag	with	the	--clock--
argument,	make	sure	that	nothing	else	is	publishing	a	time.	The	easiest	way	to	do	this	is	to	stop	any
simulators	you	have	running.

You	can	find	out	information	about	a	bag	file	with	the	info	functionality:

user@hostname$	rosbag	info	laser.bag

path:								laser.bag

version:					2.0

duration:				1:44s	(104s)

start:							Jul	07	2011	10:04:13.44	(1310058253.44)

end:									Jul	07	2011	10:05:58.04	(1310058358.04)

size:								8.2	MB

messages:				2004

compression:	none	[11/11	chunks]

types:							sensor_msgs/LaserScan	[90c7ef2dc6895d81024acba2ac42f369]

topics:						base_scan			2004	msgs				:	sensor_msgs/LaserScan

This	gives	you	details	about	how	much	time	the	bag	covers,	when	it	started	and	stopped
recording,	how	large	it	is,	how	many	messages	it	has	in	it,	and	what	those	messages	(and
topics)	are.	This	is	useful	for	you	to	verify	that	a	bag	that	you	just	recorded	has	the	right
information	in	it.

TIP
rosbag	is	also	a	great	tool	to	use	when	debugging	new	algorithms	for	your	robot.	Instead	of	feeding	live
sensor	data	to	your	algorithm	as	you	try	to	debug	it,	you	can	record	a	representative	set	of	data	with	rosbag
and	then	play	it	back.	This	means	that	your	algorithm	is	seeing	exactly	the	same	data	every	time	you	run	it.
This	repeatability	will	speed	up	your	debugging,	since	you	can	guarantee	that	any	changes	in	behavior	are
caused	by	changes	in	your	code,	and	not	by	some	new	sensor	input	that	you’ve	never	seen	before.	Even	if
the	world	does	not	change	and	your	sensor	does	not	move,	measurement	errors	mean	that	you’ll	never	see
the	same	stream	of	sensor	data	twice.	This	will	slow	down	your	debugging,	especially	for	complex
algorithms.



Building	Maps
Now	we’re	going	to	look	at	how	you	can	build	a	map	like	the	one	shown	in	Figure	9-1
using	the	tools	in	ROS.	One	thing	to	note	about	that	map	in	Figure	9-1	is	that	it’s	quite
“messy.”	Since	it	was	created	from	sensor	data	taken	from	a	robot,	it	includes	some	things
you	might	not	expect.	Along	the	bottom	edge	of	the	map,	the	wall	seems	to	have	holes	in
it.	These	are	caused	by	bad	sensor	readings,	possibly	the	result	of	clutter	under	the	desks
in	those	rooms.	The	strange	blob	in	the	largish	room	toward	the	top	in	the	middle	is	a	pool
table.	The	gray	spots	in	the	larger	room	going	diagonally	down	and	right	are	chair	legs
(this	was	a	conference	room).	The	walls	are	not	always	perfectly	straight,	and	there	are
sometimes	“unknown”	areas	in	the	middle	of	rooms	if	the	sensors	never	made
measurements	there.	When	you	start	to	make	maps	of	your	own	with	your	robot,	you
should	be	prepared	for	them	to	look	like	this.	Generally	speaking,	using	more	data	to
create	the	map	will	result	in	a	better	map.	However,	no	map	will	be	perfect.	Even	though
the	maps	might	not	look	all	that	great	to	you,	they’re	still	perfectly	useful	to	the	robot,	as
we	will	see.

You	can	build	maps	with	the	slam_gmapping	node	from	the	gmapping	package.	The
slam_gmapping	node	uses	an	implementation	of	the	GMapping	algorithm,	written	by
Giorgio	Grisstti,	Cyrill	Stachniss,	and	Wolfram	Burgard.	GMapping	uses	a	Rao-
Blackwellized	particle	filter	to	keep	track	of	the	likely	positions	of	the	robot,	based	on	its
sensor	data	and	the	parts	of	the	map	that	have	already	been	built.	If	you’re	interested	in	the
details	of	the	algorithm,	they’re	described	in	these	two	papers:

Giorgio	Grisetti,	Cyrill	Stachniss,	and	Wolfram	Burgard,	“Improved	Techniques	for
Grid	Mapping	with	Rao-Blackwellized	Particle	Filters,”	IEEE	Transactions	on
Robotics	23	(2007):	34–46.

Giorgio	Grisetti,	Cyrill	Stachniss,	and	Wolfram	Burgard,	“Improving	Grid-based
SLAM	with	Rao-Blackwellized	Particle	Filters	by	Adaptive	Proposals	and	Selective
Resampling,”	Proceedings	of	the	IEEE	International	Conference	on	Robotics	and
Automation	(2005):	2432–2437.

First,	we’re	going	to	generate	some	data	to	build	the	map	from.	Although	you	can	build	a
map	using	live	sensor	data,	as	the	robot	moves	about	the	world,	we’re	going	to	take
another	approach.	We’re	going	to	drive	the	robot	around	and	save	the	sensor	data	to	a	file
using	rosbag.	We’re	then	going	to	replay	this	sensor	data	and	use	slam_gmapping	to	build
a	map	for	us.	Collecting	data	in	a	bag	file	is	often	a	good	idea	when	building	a	map,	since
it	lets	you	play	around	with	the	parameters	of	the	slam_gmapping	node	to	get	a	good	map,
without	having	to	go	and	run	the	robot	through	the	world	again.	This	can	be	a	real	time-
saver,	especially	if	you	need	to	tweak	the	mapping	node	parameters	a	lot.

First,	let’s	record	some	data.Start	up	a	simulator	with	a	Turtlebot	in	it:

user@hostname$	roslaunch	turtlebot_stage	turtlebot_in_stage.launch



This	launch	file	starts	up	the	Stage	robot	simulator	and	an	instance	of	rviz.	Zoom	out	a	bit
in	the	simulator	(using	the	mouse	wheel),	and	you	should	see	something	like	Figure	9-3.

Figure	9-3.	The	rviz	visualizer	showing	a	simple	world	with	a	Turtlebot	in	it

Now,	start	up	the	the	keyboard_teleop	node	from	the	turtlebot_teleop	package:

user@hostname$	roslaunch	turtlebot_teleop	keyboard_teleop.launch

This	will	let	you	drive	the	robot	around	in	the	simulated	world	using	the	keys	shown	by
the	node	when	it	started:

Control	Your	Turtlebot!

//---------------------------

Moving	around:

			u				i				o

			j				k				l

			m				,				.

q/z	:	increase/decrease	max	speeds	by	10%

w/x	:	increase/decrease	only	linear	speed	by	10%

e/c	:	increase/decrease	only	angular	speed	by	10%

space	key,	k	:	force	stop

anything	else	:	stop	smoothly

CTRL-C	to	quit

currently:	 speed	0.2	 turn	1

Practice	driving	the	robot	around	for	a	bit.	Once	you’ve	got	the	hang	of	it,	we	can	get
started	collecting	some	data.	slam_gmapping	builds	maps	from	data	from	the	laser	range-
finder	and	the	odometry	system,	as	reported	by	tf.	Although	the	Turtlebot	doesn’t	actually
have	a	laser	range-finder,	it	creates	LaserScan	messages	from	its	Kinect	data	and	sends
them	over	the	scan	topic.	With	the	simulator	still	running,	in	a	new	terminal	window,	start



recording	some	data:

user@hostname$	rosbag	record	-O	data.bag	/scan	/tf

Now,	drive	the	robot	around	the	world	for	a	while.	Try	to	cover	as	much	of	the	map	as
possible,	and	make	sure	you	visit	the	same	locations	a	couple	of	times.	Doing	this	will
result	in	a	better	final	map.	If	you	get	to	the	end	of	this	section	and	your	map	doesn’t	look
very	good,	try	recording	some	new	data	and	drive	the	robot	around	the	simulated	world
for	longer,	or	a	bit	more	slowly.

Once	you’ve	driven	around	for	a	while,	use	Ctrl-C	to	stop	rosbag.	Verify	that	you	have	a
data	bag	called	data.bag.	You	can	find	out	what’s	in	this	bag	by	using	the	rosbag	info
command:

user@hostname$	rosbag	info	data.bag

path:								data.bag

version:					2.0

duration:				3:15s	(195s)

start:							Dec	31	1969	16:00:23.80	(23.80)

end:									Dec	31	1969	16:03:39.60	(219.60)

size:								14.4	MB

messages:				11749

compression:	none	[19/19	chunks]

types:							sensor_msgs/LaserScan	[90c7ef2dc6895d81024acba2ac42f369]

													tf2_msgs/TFMessage				[94810edda583a504dfda3829e70d7eec]

topics:						/scan			1959	msgs				:	sensor_msgs/LaserScan

													/tf					9790	msgs				:	tf2_msgs/TFMessage				(3	connections)

Once	you	have	a	bag	that	seems	to	have	enough	data	in	it,	stop	the	simulator	with	a	Ctrl-C
in	the	terminal	you	ran	roslaunch	in.	It’s	important	to	stop	the	simulator	before	starting
the	mapping	process,	because	it	will	be	publishing	LaserScan	messages	that	will	conflict
with	those	that	are	being	replayed	by	rosbag.	Now	it’s	time	to	build	a	map.	Start	roscore
in	one	of	the	terminals.	In	another	terminal,	we’re	going	to	tell	ROS	to	use	the	timestamps
recorded	in	the	bag	file,	and	start	the	slam_gmapping	node:

user@hostname$	rosparam	set	use_sim_time	true

user@hostname$	rosrun	gmapping	slam_gmapping

If	your	robot’s	laser	scan	topic	is	not	called	scan,	you	will	need	to	tell	slam_gmapping
what	it	is	by	adding	scan:=laser_scan_topic	when	you	start	the	node.	The	mapper
should	now	be	running,	waiting	to	see	some	data.

We’re	going	to	use	rosbag	play	to	replay	the	data	that	we	recorded	from	the	simulated
robot:

user@hostname$	rosbag	play	--clock	data.bag

When	it	starts	receiving	data,	slam_gmapping	should	start	printing	out	diagnostic
information.	Sit	back	and	wait	until	rosbag	finishes	replaying	the	data	and	slam_gmapping
has	stopped	printing	diagnostics.	At	this	point,	your	map	has	been	built,	but	it	hasn’t	been



saved	to	disk.	Tell	slam_gmapping	to	do	this	by	using	the	map_saver	node	from	the
map_server	package.	Without	stopping	slam_gmapping,	run	the	map_saver	node	in
another	terminal:

user@hostname$	rosrun	map_server	map_saver

This	will	save	two	files	to	disk:	map.pgm,	which	contains	the	map,	and	map.yaml,	which
contains	the	map	metadata.	Take	a	look,	and	make	sure	you	can	see	these	files.	You	can
view	the	map	file	using	any	standard	image	viewer,	such	as	eog.

The	map	shown	in	Figure	9-4	was	generated	by	slowly	rotating	the	TurtleBot	in	place	for
a	little	more	than	one	revolution,	without	moving	from	its	starting	position	in	the
simulator.	The	first	thing	to	notice	about	this	map	is	that	the	actual	mapped	part	of	the
world	is	tiny	compared	to	the	rest	of	the	map.	This	is	because	the	default	size	of	ROS
maps	is	200	m	×	200	m,	with	a	cell	size	of	5	cm	(that	means	that	the	image	size	is	2,000	x
2,000	pixels).	Figure	9-5	shows	a	zoomed-in	version	of	the	interesting	part	of	the	map.
This	map	isn’t	very	good:	the	walls	are	not	at	right	angles	to	each	other,	the	open	space
extends	beyond	one	of	the	walls,	and	there	are	notable	gaps	in	several	of	the	walls.	As
Figure	9-5	shows,	getting	a	good	map	is	not	just	a	simple	matter	of	running
slam_gmapping	on	any	old	set	of	data.	Building	a	good	map	is	hard	and	can	be	time-
consuming,	but	it’s	worth	the	investment	—	a	good	map	will	make	navigating	around	the
world	and	knowing	where	you	are	a	lot	easier,	as	we’ll	see	in	the	next	chapter.



Figure	9-4.	A	map	generated	from	a	Turtlebot	spinning	in	place

Figure	9-5.	A	zoomed-in	section	of	the	map	generated	from	a	Turtlebot	spinning	in	place

The	YAML	file	generated	by	slam_gmapping	looks	like	this:

image:	map.pgm

resolution:	0.050000

origin:	[-100.000000,	-100.000000,	0.000000]

negate:	0

occupied_thresh:	0.65

free_thresh:	0.196



Why	is	the	map	so	bad?	One	of	the	reasons	is	that	the	sensors	on	the	Turtlebot	are	not
great	for	creating	maps.	slam_gmapping	expects	LaserScan	messages,	and	as	mentioned
earlier,	the	Turtlebot	doesn’t	have	a	laser	range-finder;	instead,	it	uses	the	data	from	a
Microsoft	Kinect	sensor	to	synthesize	LaserScan	messages,	which	can	be	used	by
slam_gmapping.	The	problem	is	that	this	fake	laser	range-finder	has	a	shorter	range	and	a
narrower	field	of	view	than	a	typical	laser	sensor	does.	slam_gmapping	uses	the	laser	data
to	estimate	how	the	robot	is	moving,	and	this	estimation	is	better	with	long-range	data
over	a	wide	field	of	view.

We	can	improve	mapping	quality	by	setting	some	of	the	gmapping	parameters	to	different
values:

user@hostname$	rosparam	set	/slam_gmapping/angularUpdate	0.1

user@hostname$	rosparam	set	/slam_gmapping/linearUpdate	0.1

user@hostname$	rosparam	set	/slam_gmapping/lskip	10

user@hostname$	rosparam	set	/slam_gmapping/xmax	10

user@hostname$	rosparam	set	/slam_gmapping/xmin	-10

user@hostname$	rosparam	set	/slam_gmapping/ymax	10

user@hostname$	rosparam	set	/slam_gmapping/ymin	-10

These	change	how	far	the	robot	has	to	rotate	(angularUpdate)	and	move	(linearUpdate)
before	a	new	scan	is	considered	for	inclusion	in	the	map,	how	many	beams	to	skip	when
processing	each	LaserScan	message	(lskip),	and	the	extent	of	the	map	(xmin,	xmax,	ymin,
ymax).

We	can	also	improve	the	quality	of	the	maps	by	driving	around	slowly,	especially	when
turning	the	robot.	Make	the	parameter	changes	listed	here	and	collect	a	new	bag	of	data	by
driving	your	robot	around	slowly,	and	you’ll	get	a	map	that	looks	more	like	Figure	9-6.
It’s	still	not	perfect	(no	map	built	from	sensor	data	ever	is),	but	it’s	certainly	better	than	the
previous	one.	Note	that	the	parameter	changes	only	affect	slam_gmapping,	so	you	could
use	them	with	the	original	data	bag	you	collected,	without	driving	the	robot	around	again.
As	we	noted	earlier,	this	is	one	of	the	advantages	of	using	recorded	data	when	building
maps.

TIP
When	building	a	map	with	slam_gmapping,	record	the	information	you	need	with	rosbag.	This	will	let	you
experiment	with	different	values	of	the	slam_gmapping	parameters	to	get	a	better	map.



Figure	9-6.	A	better	map,	built	from	more	carefully	collected	data	and	better	parameter	settings

You	can	also	build	your	maps	directly	from	published	messages,	without	saving	them	to	a
bag	file	first.	To	do	this,	you	just	need	to	start	the	slam_gmapping	node	while	you’re
driving	your	robot	around.	We	prefer	to	record	the	data	first,	since	there’s	less
computational	load	on	the	robot	when	you’re	driving	it	around	that	way.	In	the	end,
however,	you	should	end	up	with	similar	maps,	regardless	of	whether	or	not	you	saved	the
data	with	rosbag	first.



Starting	a	Map	Server	and	Looking	at	a	Map
Once	you	have	a	map,	you	need	to	make	it	available	to	ROS.	You	do	this	by	running	the
map_server	node	from	the	map_server	package,	and	pointing	it	at	the	YAML	file	for	a
map	you	have	already	made.	As	explained	earlier,	this	YAML	file	contains	the	filename
for	the	image	that	represents	the	map	and	additional	information	about	it,	like	the
resolution	(meters	per	pixel),	where	the	origin	is,	what	the	thresholds	for	occupied	and
open	space	are,	and	whether	the	image	uses	white	for	open	space	or	occupied	space.	With
roscore	running,	you	can	start	a	map	server	like	this:

user@hostname$	rosrun	map_server	map_server	map.yaml

where	map.yaml	is	the	map	YAML	file.	Running	the	map	server	will	result	in	two	topics
being	published.	map	contains	messages	of	type	nav_msgs/OccupancyGrid,	corresponding
to	the	map	itself.	map_metadata	contains	messages	of	type	nav_msgs/MapMetaData,
corresponding	to	the	data	in	the	YAML	file:

user@hostname$	rostopic	list

/map

/map_metadata

/rosout

/rosout_agg

user@hostname$	rostopic	echo	map_metadata

map_load_time:

		secs:	1427308667

		nsecs:	991178307

resolution:	0.0250000003725

width:	2265

height:	2435

origin:

		position:

				x:	0.0

				y:	0.0

				z:	0.0

		orientation:

				x:	0.0

				y:	0.0

				z:	0.0

				w:	1.0

This	shows	that	the	map	contains	2,265	x	2,435	cells,	with	a	resolution	of	2.5	cm	per	cell.
The	origin	of	the	world	coordinate	frame	is	the	origin	of	the	map,	with	the	same
orientation.	We	can	take	a	look	at	the	map	in	rviz,	to	see	what’s	actually	in	it.	Start	up	a
map	server	like	this:

user@hostname$	roscd	mapping/maps

user@hostname$	rosrun	map_server	map_server	willow.yaml

Now,	in	another	terminal,	start	up	an	instance	of	rviz:

user@hostname$	rosrun	rviz	rviz

Add	a	display	of	type	Map,	and	set	the	topic	name	to	/map.	Make	sure	that	the	fixed	frame



is	also	set	to	/map.	You	should	see	something	like	Figure	9-7.

This	map	was	built	using	a	PR2	robot	with	a	laser	range-finder	and	slam_gmapping,	and	it
illustrates	a	number	of	things	you	often	see	in	maps	built	from	sensor	data.	First,	it	is	not
axis-aligned.	When	the	robot	was	collecting	data	to	build	the	map,	the	odometry	data
coordinate	frame	was	aligned	with	the	starting	position	of	the	robot,	which	means	that	the
final	map	is	rotated	a	bit.	We	can	fix	this	in	the	YAML	file	if	we	want	to,	although	it
doesn’t	affect	the	robot’s	ability	to	navigate.



Figure	9-7.	A	map	built	using	slam_gmapping	and	displayed	in	rviz

Second,	the	map	is	quite	messy.	Although	the	corridors	and	open	spaces	are	fairly	clean,
there	seem	to	be	a	lot	of	long,	skinny	open	spaces	coming	off	these	open	spaces.	These	are
actually	rooms	that	the	robot	did	not	drive	into.	As	the	robot	drove	past	these	rooms,	the
laser	range-finder	made	some	measurements	into	them,	but	there	wasn’t	enough	data	to
reconstruct	a	decent	map	of	each	room.	Again,	this	won’t	affect	the	ability	of	the	robot	to
localize	itself,	but	it	does	mean	that	we	might	not	be	able	to	get	the	robot	to	navigate	into
these	rooms	autonomously,	since	they’re	technically	not	in	the	map.

Finally,	there’s	a	big	black	blob	in	the	lower-right	corner	of	the	map.	This	is	a	room	that
the	robot	should	not	go	into,	even	though	it’s	on	the	map.	After	the	map	was	made,
someone	loaded	the	image	file	into	a	graphics	program	like	gimp	and	painted	the	pixels	in
the	room	black.	When	the	robot	tries	to	plan	a	path	in	the	map,	these	areas	will	be
considered	to	be	occupied,	and	it	will	not	plan	a	path	through	them.	This	change	will
affect	the	robot’s	ability	to	localize	itself	a	bit,	especially	when	it	is	near	the	doorway	to
this	space.	Localization	involves	comparing	the	current	sensor	readings	to	the	map,	to
make	sure	the	robot	is	seeing	what	it	expects	to	in	a	given	location.	Since	there’s	an
obstacle	in	the	map	(the	big	black	blob)	that	doesn’t	match	up	with	something	in	the	real
world,	the	robot’s	confidence	in	where	it	is	will	be	lower.	However,	as	long	as	it	can	see
enough	of	the	world	that	does	match	up	with	its	map	(which	it	can	in	this	case,	because	the
laser	range-finder	on	the	PR2	has	a	wide	field	of	view),	the	localization	algorithm	is
robust	enough	to	cope.



Summary
In	this	chapter,	we	looked	at	how	to	use	the	slam_gmapping	package	to	create	a	high-
quality	map	of	the	robot’s	environment.	We	also	introduced	you	to	rosbag,	which	can	let
you	save	published	messages	to	a	file	and	replay	them	later.	We’ll	be	seeing	rosbag	again
later	on	in	this	book,	since	it’s	a	useful	tool.

One	of	the	important	things	to	remember	about	building	maps	is	that,	although	many
roboticists	consider	it	to	be	a	“solved	problem,”	it	is	often	tricky	to	do	in	practice,
especially	with	cheaper	robots	and	less	capable	sensors.

We’ve	really	just	scratched	the	surface	of	the	ROS	mapping	system.	There	are	a	huge
number	of	parameters	you	can	set	to	alter	the	mapping	behavior.	These	are	all	documented
at	the	gmapping	wiki	page	and	described	in	the	papers	mentioned	earlier.	However,	unless
you	know	what	the	effects	of	changing	these	parameters	are,	we’d	recommend	that	you
don’t	fiddle	with	them	too	much.	Find	some	settings	that	work	for	your	robot,	and	then
don’t	change	them.

Once	you’ve	built	maps	a	few	times,	and	you	have	a	feel	for	it,	it	shouldn’t	take	too	long
to	make	a	new	one	when	you	find	yourself	in	a	new	environment.	Once	you	have	a	map,
then	you’re	ready	to	have	your	robot	start	to	autonomously	navigate	about,	which	is	the
subject	of	the	next	chapter.

http://wiki.ros.org/gmapping?distro=indigo




Chapter	10.	Navigating	About	the	World

One	of	the	most	basic	things	that	a	robot	can	do	is	to	move	around	the	world.	To	do	this
effectively,	the	robot	needs	to	know	where	it	is	and	where	it	should	be	going.	This	is
usually	acheived	by	giving	the	robot	a	map	of	the	world,	a	starting	location,	and	a	goal
location.	In	the	previous	chapter,	we	saw	how	to	build	a	map	of	the	world	from	sensor
data.	Now,	we’ll	look	at	how	to	make	your	robot	autonomously	navigate	from	one	part	of
the	world	to	another,	using	this	map	and	the	ROS	navigation	packages.	We’ll	start	by
helping	the	robot	to	figure	out	where	it	is.



Localizing	the	Robot	in	a	Map
In	this	section,	we’ll	see	how	we	can	use	the	ROS	amcl	package	to	localize	the	robot	in	a
map.	The	amcl	node	implements	a	set	of	probabilistic	localization	algorithms,	collectively
known	as	Adaptive	Monte	Carlo	Localization,	which	are	described	in	the	book
Probabilistic	Robotics	by	Sebsastian	Thrun,	Wolfram	Burgard,	and	Dieter	Fox	(MIT
Press).	In	particular,	it	uses	the	algorithms	sample_motion_​model_odometry,
beam_range_finder_model,	likelihood_field_range_finder_​model,	Augmented_MCL,
and	KLD_Sampling_MCL.	While	you	don’t	need	to	know	all	of	the	technical	details	of	how
these	algorithms	work	in	order	to	use	the	localization	package,	understanding	some	of	the
high-level	details	will	make	your	life	easier	when	you’re	trying	to	make	localization
work.1

The	location	of	the	robot,	also	known	as	its	pose,	is	represented	by	a	position	and
orientation	in	the	map	coordinate	frame	(sometimes	also	called	the	world	coordinate
frame).	amcl	maintains	a	set	of	these	poses,	representing	where	it	thinks	the	robot	might
be.	Each	of	these	candidate	poses	has	associated	with	it	a	probability;	higher-probability
poses	are	more	likely	to	be	where	the	robot	actually	is.	As	the	robot	moves	around	the
world,	the	sensor	readings	are	compared	to	the	readings	that	would	be	expected	for	each
of	the	poses,	according	to	the	map.	For	each	candidate	pose,	if	the	readings	are	consistent
with	the	map,	then	the	probability	of	that	pose	increases.	If	the	readings	are	inconsistent,
then	the	probability	decreases.	Over	time,	candidate	poses	with	very	low	probability	(i.e.,
where	the	robot	is	most	likely	not	really	in	that	pose)	go	away,	while	those	with	high
probability	stick	around.	As	the	robot	moves	around	the	world,	the	candidate	poses	move
with	it,	following	the	odometry	estimates	that	the	robot	generates.

So,	amcl	starts	off	with	a	set	of	candidate	poses	centered	around	where	we	think	that	the
robot	is.	Over	time,	as	the	robot	moves	around	and	takes	sensor	measurements	of	the
world,	this	set	of	poses	should	converge	to	the	actual	pose	of	the	robot.	At	any	given	time,
the	most	likely	pose	of	the	robot,	which	is	used	for	path	planning,	is	the	candidate	pose
with	the	highest	probability.	It’s	important	to	note,	however,	that	this	might	not	be	the
actual	pose	of	the	robot.	It’s	likely	to	be	close	to	the	actual	pose,	but	it’s	very	unlikely	to
be	exactly	the	actual	pose.	In	practice,	this	means	that	when	you	use	the	navigation	system
to	move	the	robot	to	a	particular	place	in	the	world,	it’s	likely	to	get	close,	but	it	will	never
end	up	in	exactly	the	right	place,	even	if	the	localization	system	claims	that	it’s	there.	This
is	one	of	the	trade-offs	of	using	probabilistic	algorithms;	they’re	really	robust	and	work
well	most	of	the	time,	but	you	can’t	guarantee	that	they’re	completely	accurate.	However,
they’re	usually	accurate	enough	for	path	planning	and,	when	combined	with	a	sensor-
based	local	path-following	algorithm,	for	navigation.

Now	that	you	understand	a	bit	about	how	the	localization	system	works,	let’s	take	a	look
at	it	in	action.	First,	let’s	make	sure	that	any	map	server	you	might	be	running	is	stopped.
Once	you’ve	done	that	run	this	launch	file:



user@hostname$	roslaunch	turtlebot_stage	turtlebot_in_stage.launch

This	will	start	up	a	simulation	of	a	simple	maze	world	with	a	Turtlebot	robot	in	it,	launch	a
map	server	with	a	map	made	from	this	world,	start	the	amcl	node,	and	launch	an	instance
of	rviz	so	that	you	can	see	what’s	going	on.	Your	rviz	window	should	look	similar	to
Figure	10-1,	and	you	should	also	see	a	few	other	windows	appear	(for	the	simulator	and
some	other	things;	we’ll	ignore	them	for	now).

Figure	10-1.	The	rviz	view	of	a	Turtlebot	2	robot	being	simulated	in	Stage

Uncheck	all	of	the	displays	in	rviz	except	RobotModel,	Map,	and	ParticleCloud.	We’ll
get	back	to	the	other	displays	later,	when	we	talk	about	how	the	navigation	system	in	ROS
works.	For	now,	you	should	be	able	to	see	the	robot,	a	map	(which	has	been	hand-drawn,
rather	than	learned	from	sensor	data),	and	a	set	of	green	arrows,	like	in	Figure	10-2.	The
green	arrows	are	the	pose	estimates	from	amcl;	that	is,	the	places	where	the	localization
algorithm	thinks	that	the	robot	might	be.	With	this	launch	file	they’re	automatically
generated,	but	in	some	situations,	you	might	have	to	provide	an	initial	position	estimate
yourself.	You	can	do	this	by	clicking	on	the	“2D	Pose	Estimate”	button,	then	clicking,
holding,	and	dragging	in	the	rviz	window.	The	arrow	that	you	see	is	your	estimate	of
where	the	robot	should	be	in	the	map,	and	it’s	passed	on	to	the	amcl	algorithm.	The
algorithm	then	probabilistically	generates	possible	poses	around	this	initial	estimate.	Try
this	now.	You	can	set	the	initial	pose	of	the	robot	to	anywhere	in	the	map,	even	if	it’s
really	not	there.	Once	you	set	the	estimate,	notice	how	the	visualization	of	the	robot	jumps
to	that	location.	This	is	because	rviz	relies	on	the	pose	estimate	to	place	the	robot	in	the
map,	while	stage	(the	simulator)	actually	knows	where	the	robot	is.



Figure	10-2.	rviz	showing	just	the	robot,	the	map,	and	the	amcl	localization	estimates



Getting	a	Good	Initial	Localization
How	do	you	get	a	good	initial	localization	for	the	robot?	After	you	have	the	hang	of	giving
pose	estimates	using	rviz,	try	to	give	a	pose	estimate	that	reflects	the	actual	position	of
the	robot.	You	can	see	this	in	the	stage	simulation	window.	It’s	quite	easy	to	get	a	rough
estimate,	but	how	can	you	tell	how	good	it	actually	is?

One	way	to	improve	the	estimate	is	to	compare	it	to	the	robot’s	sensor	data.	Turn	on	the
“LaserScan	(kinect)”	display,	and	you	should	see	the	data	from	the	simulated	laser	range-
finder	on	the	Turtlebot.	If	the	robot	is	well	localized,	then	this	data	should	line	up	well
with	the	map.	Figure	10-3	shows	a	poor	initial	estimate:	the	laser	contact	points	don’t	line
up	with	the	walls	at	all.



Figure	10-3.	A	poor	initial	localization,	where	the	sensor	data	does	not	line	up	with	the	map

Try	giving	some	more	initial	pose	estimates,	and	see	if	you	can	get	the	sensor	data	to	agree
with	the	map.	Remember	that	rviz	is	rendering	things	in	3D,	with	perspective,	and	that
the	laser	data	is	being	shown	slightly	above	the	floor.	This	means	that	even	a	perfectly
located	robot	might	result	in	laser	data	looking	like	it’s	not	quite	on	top	of	the	walls	in	the
map.	Once	you	have	the	robot	well	localized	again,	you	can	get	it	to	drive	around	the
world.	Don’t	worry	if	you’re	not	in	exactly	the	right	place.	As	long	as	you’re	roughly
localized,	ROS	can	deal	with	it.



What’s	Going	on	Behind	the	Scenes
You’ve	seen	how	to	localize	the	robot	using	rviz,	but	what’s	actually	happening	behind
the	scenes?	As	with	everything	in	ROS,	it’s	all	about	messages	sent	over	topics.

rviz	subscribes	to	a	topic	called	initialpose,	of	type	geometry_msgs/PoseWith​
Co⁠varianceStamped.	When	it	gets	a	message	on	this	topic,	it	resets	the	set	of	candidate
poses	that	it’s	keeping,	randomly	generating	them	from	a	normal	distribution,	centered	on
the	pose	in	the	message.	All	rviz	is	doing	when	you	use	it	to	set	an	initial	pose	is
publishing	a	message	on	this	topic.

Instead	of	using	a	normally	distributed	initial	pose,	you	can	get	amcl	to	use	a	uniform	set
of	candidate	poses,	scattered	all	over	the	map.	You	might	do	this	if	you	really	don’t	have	a
good	idea	of	where	the	robot	is.	However,	this	makes	it	(much)	harder	for	the	algorithms
to	converge	on	a	good	pose	estimate,	so	you	should	only	do	this	if	you	really	don’t	know
where	the	robot	is	starting.	You	can	enable	this	behavior	by	making	a	service	call	to	the
global_localization	service,	using	an	empty	request	(of	type	std_srvs/Empty).

amcl	was	initially	designed	to	work	with	robots	that	have	a	laser	range-finder	that
generates	sensor_msgs/LaserScan	messages.	It	subscribes	to	the	topics	scan	(for	the
laser),	map	(for	the	map),	initialpose	(for	the	pose	estimate),	and	tf	(for	transform
information,	which	summarizes	the	odometry	information	published	by	the	robot).	It
publishes	on	the	tf	topic,	with	a	transform	from	the	odom	coordinate	frame	to	the	map
coordinate	frame.	This	transform	represents	the	correction	that	needs	to	be	applied	to	the
robot’s	odometry	estimate	to	correctly	locate	it	in	the	map	coordinate	frame.	Generally,
you	don’t	need	to	worry	about	any	of	this,	since	ROS	takes	care	of	it	for	you.	However,
understanding	the	underlying	mechanisms	is	helpful	in	understanding	how	the	system	can
fail,	and	how	you	might	fix	it.



Tips	for	Setting	a	Better	Initial	Pose
Good	navigation	relies	on	a	good	localization	of	the	robot.	One	way	to	improve	the	initial
pose	of	the	robot	is	to	look	at	its	sensor	readings	in	rviz	and	make	sure	that	they	match
the	map	well,	like	we	did	earlier.	This	works	particularly	well	if	you	have	a	laser	range-
finder,	since	the	data	from	it	is	like	a	local	map.	Move	the	initial	pose	estimate	around
until	the	laser	readings	correspond	well	to	the	map,	and	you	should	have	a	good	pose
estimate.

To	make	the	pose	estimate	even	better,	you	can	drive	the	robot	around	a	bit	before	doing
any	autonomous	navigation.	This	will	let	the	set	of	candidate	particles	in	the	amcl	node
converge	onto	the	actual	position	of	the	robot,	and	give	a	more	reliable	estimate	of	where
it	is.	With	a	bit	of	practice,	you	can	learn	the	sorts	of	movements	that	will	make	this
happen	quickly	for	your	particular	robot	and	sensors.



Using	the	ROS	Navigation	Stack
Now	that	we’ve	got	a	(more-or-less)	localized	robot,	let’s	get	it	to	drive	around	a	bit.
We’re	going	to	start	by	interacting	with	the	navigation	system,	often	called	the	nav	stack
by	ROS	old-timers,	through	rviz.	First,	though,	let’s	talk	a	bit	about	what	the	nav	stack
actually	is	and	how	it	works.



The	ROS	Navigation	Stack
The	ROS	navigation	system	is	pretty	complex,	and	we’re	only	going	to	scratch	the	surface
of	it	here.	Full	details	of	what	it	can	do	and	how	it	can	be	configured	are	available	on	the
navigation	wiki	page.	For	now,	we’re	going	to	assume	that	the	nav	stack	has	been
configured	for	your	robot	and	is	working	as	it	should.	If	this	isn’t	the	case,	you’re	going	to
need	to	go	to	the	wiki	and	follow	the	instructions	there	(or	jump	ahead	to	Chapter	17).

At	its	heart,	the	nav	stack	is	a	system	that	allows	a	ROS-enabled	robot	to	move	about	the
world	to	a	specified	goal	position	efficiently,	and	without	hitting	things	along	the	way.	It
integrates	information	from	the	map,	localization	system,	sensors,	and	odometry	to	plan	a
good	path	from	the	current	position	to	the	goal	position,	and	then	follows	it	to	the	best	of
the	robot’s	ability.	If	the	robot	gets	stuck,	usually	because	of	some	unmapped	obstacles,	it
can	replan	and	recover.	The	nav	stack	is	one	of	the	most	heavily	used	parts	of	ROS,	since
almost	every	robot	that	moves	uses	it.

At	a	high	level,	the	nav	stack	works	like	this:

1.	 A	navigation	goal	is	sent	to	the	nav	stack.	This	is	done	using	an	action	call	with	a
goal	of	type	MoveBaseGoal,	which	specifies	a	goal	pose	(position	and	orientation)	in
some	coordinate	frame	(commonly	the	map	frame).

2.	 The	nav	stack	uses	a	path-planning	algorithm	in	the	global	planner	to	plan	the
shortest	path	from	the	current	location	to	the	goal,	using	the	map.

3.	 This	path	is	passed	to	the	local	planner,	which	tries	to	drive	the	robot	along	the	path.
The	local	planner	uses	information	from	the	sensors	in	order	to	avoid	obstacles	that
appear	in	front	of	the	robot	but	that	are	not	in	the	map,	such	as	people.	If	the	local
planner	gets	stuck	and	cannot	make	progress,	it	can	ask	the	global	planner	to	make	a
new	plan	and	then	attempt	to	follow	that.

4.	 When	the	robot	gets	close	to	the	goal	pose,	the	action	terminates	and	we’re	done.

We’ll	start	by	looking	at	how	to	do	this	in	rviz.

http://wiki.ros.org/navigation?distro=indigo


Navigating	in	rviz
Assuming	that	your	robot	is	well	localized,	getting	it	to	navigate	around	the	world	is	easy.
Click	on	the	“2D	Nav	Goal”	button,	and	then	click	and	drag	in	the	rviz	window	to	give
the	robot	a	target	position,	known	as	a	goal	pose.	The	robot	should	drive	to	the	goal	pose
on	its	own,	not	hitting	anything	along	the	way.	Congratulations!	You’ve	just	used	the	nav
stack	in	ROS.

Before	we	show	you	what’s	actually	going	on	under	the	hood,	take	a	look	at	the	set	of
possible	poses	maintained	by	amcl.	As	the	robot	was	moving,	amcl	was	comparing	the
readings	from	the	laser	range-finder	to	what	it	expected	to	see,	given	the	possible	poses
and	the	map.	If	the	readings	and	the	predictions	were	similar	in	a	particular	candidate
pose,	amcl	gave	it	a	higher	probability	of	being	the	real	pose.	If	the	readings	and	the
predictions	were	very	different,	amcl	lowered	the	probability	of	the	pose.	Poses	with	very
low	probabilities	were	deleted	and	replaced	with	new	ones	close	to	the	existing	ones	with
higher	probability.	Over	time,	the	cloud	of	poses	converged	onto	the	actual	position	of	the
robot.

This	convergence	of	the	amcl	localization	happens	even	if	the	pose	is	slightly	off.	Give	the
robot	a	new	pose	estimate	a	little	bit	away	from	its	actual	location,	and	notice	how	the	set
of	candidate	poses	spreads	out	again.	Now,	give	it	a	nav	goal	a	small	distance	away,	and
watch	what	happens	to	the	set	of	candidate	poses.	Either	the	navigation	stack	failed
because	the	pose	estimate	was	just	too	far	off	to	recover	from,	or	the	pose	estimate
converged	on	the	robot’s	position.	If	navigation	failed,	then	try	again,	making	the	pose
estimate	a	little	closer	to	the	robot’s	actual	position	than	the	last	time.	Keep	trying	it	until
you	can	get	the	localization	estimate	to	converge,	so	that	you	can	get	a	sense	of	how	far
off	you	can	be	and	still	recover.

Once	you’re	done	confusing	the	robot,	make	sure	it’s	well-localized	again.	Now,	we’re
going	to	take	a	look	at	what’s	actually	going	on	inside	the	nav	stack.	You	don’t,	strictly
speaking,	need	to	know	this	to	use	the	nav	stack,	but	it’s	often	useful	when	it	comes	to
understanding	situations	where	there’s	a	navigation	failure.



Seeing	What’s	Going	On
There	are	a	lot	of	moving	parts	in	the	nav	stack,	and	you	can	see	what	many	of	them	are
doing	using	rviz.	In	this	section,	we’re	going	to	get	the	robot	to	navigate	around	the
world,	looking	at	how	the	various	functions	of	the	nav	stack	interact.

The	first	thing	that	the	nav	stack	does	is	to	create	the	global	costmap.	This	is	a	data
structure	that	says	how	good	or	bad	it	is	for	the	robot	to	be	in	a	particular	place	in	the	map.
Being	in	collision	with	a	wall	is	really	bad.	Being	in	open	space	is	good.	Getting	close	to	a
wall	is	worse	than	being	in	open	space,	but	not	as	bad	as	hitting	it.	Click	the	checkbox	for
the	Global	Planning	display,	expand	it,	then	click	the	Costmap	checkbox.	This	will	show
you	the	global	costmap,	as	in	Figure	10-4.



Figure	10-4.	The	global	costmap,	showing	more	expensive	areas	close	to	the	walls

As	with	most	things	in	ROS,	the	costmap	is	available	on	a	topic.	In	this	case,	the	topic	is
/move_base/global_costmap/costmap,	which	has	a	type	of	nav_msgs/OccupancyGrid.	In
general,	it’s	a	good	idea	to	make	internal	data	structures	in	your	nodes	visible	in	this	way,
since	it	lets	you	look	at	them	in	rviz,	which	can	be	invaluable	for	debugging	and	figuring
out	why	your	robot	isn’t	doing	what	you	expect	it	to.

Enable	the	“Path	(global)”	display	to	see	the	global	path	that	ROS	calculates,	the	“Pose
(move_base)”	display	to	see	the	goal	pose,	and	the	“Planner”	display	to	see	the	near-term
path.	Now	give	the	robot	a	navigation	goal	and	see	what	happens.	Once	it	starts	moving,
you	should	see	something	like	Figure	10-5.



Figure	10-5.	The	robot	in	motion,	showing	the	global	path	that	it	has	calculated

The	goal	pose	is	shown	by	the	red	arrow	in	the	lower	right	of	the	map.	The	path	that	ROS
has	decided	on	is	shown	as	the	green	line.	Notice	how	this	line	stays	in	areas	of	low	cost,
away	from	the	walls.	The	part	of	the	path	that	is	closest	to	the	robot	is	shown	by	the	red
line.

The	global	path	is	the	one	that	the	robot	wants	to	follow,	but	the	actual	path	that	it	moves
along	is	determined	by	the	local	planner.	The	local	planner	balances	following	the	global
path	with	avoiding	local	obstacles	that	are	detected	by	the	robot’s	sensors,	but	are	not	in
the	map.	Enable	the	“Local	Planning”	display	(and	make	sure	that	the	“Costmap”,
“Planner”,	and	“Cost	Cloud”	displays	are	enabled)	to	see	the	local	costmap	and	planning
information	(see	Figure	10-6).	The	local	planner	balances	following	the	path	and	not
hitting	things,	and	shows	good	places	to	move	through	as	“hot”	colors	and	bad	places	as
“cold”	colors.	The	local	costmap	shows	how	good	or	bad	it	thinks	cells	are,	with	hot
colors	being	bad	and	cold	colors	being	good	(confusingly).	Give	the	robot	a	few
navigation	goals,	and	see	how	the	local	path	mostly	stays	within	the	red	regions	of	the
planner	visualization.	Also	notice	how	the	planner	and	the	local	costmap	are	attached	to
the	robot’s	coordinate	frame,	and	follow	it	around.



Figure	10-6.	A	Turtlebot	driving	to	a	navigation	goal,	with	all	displays	enabled

Now	that	you	know	how	to	get	your	robot	to	navigate	around	the	world	using	rviz,	let’s
look	at	how	to	do	the	same	thing	in	a	program.



Navigating	in	Code
It’s	just	as	easy	to	move	your	robot	around	using	code	as	it	is	to	move	it	with	rviz.	All
you	have	to	do	is	make	the	action	calls	yourself.	You	can	send	the	robot	on	a	patrol	with
our	example	patrol	node:

user@hostname$	rosrun	navigation	patrol.py

This	node,	shown	in	Example	10-1,	has	a	list	of	goal	poses	that	it	cycles	through	in	order,
calling	the	move_base	action	repeatedly	and	then	waiting	for	it	to	terminate.

Example	10-1.	patrol.py
#!/usr/bin/env	python

import	rospy

import	actionlib

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

waypoints	=	[		

				[(2.1,	2.2,	0.0),	(0.0,	0.0,	0.0,	1.0)],

				[(6.5,	4.43,	0.0),	(0.0,	0.0,	-0.984047240305,	0.177907360295)]

]

def	goal_pose(pose):		

				goal_pose	=	MoveBaseGoal()

				goal_pose.target_pose.header.frame_id	=	'map'

				goal_pose.target_pose.pose.position.x	=	pose[0][0]

				goal_pose.target_pose.pose.position.y	=	pose[0][1]

				goal_pose.target_pose.pose.position.z	=	pose[0][2]

				goal_pose.target_pose.pose.orientation.x	=	pose[1][0]

				goal_pose.target_pose.pose.orientation.y	=	pose[1][1]

				goal_pose.target_pose.pose.orientation.z	=	pose[1][2]

				goal_pose.target_pose.pose.orientation.w	=	pose[1][3]

				return	goal_pose

if	__name__	==	'__main__':

				rospy.init_node('patrol')

				client	=	actionlib.SimpleActionClient('move_base',	MoveBaseAction)		

				client.wait_for_server()

				while	True:

								for	pose	in	waypoints:			

												goal	=	goal_pose(pose)

												client.send_goal(goal)

												client.wait_for_result()

A	list	of	the	waypoints	for	the	robot	to	patrol.

A	helper	function	to	turn	a	waypoint	into	a	MoveBaseGoal.

Create	a	simple	action	client,	and	wait	for	the	server	to	be	ready.

Loop	through	the	waypoints,	sending	each	as	an	action	goal.



This	code	just	repeatedly	sends	action	goals	to	the	move_base	action	and	waits	for	them	to
complete.	The	waypoints	are	specified	by	position	and	a	quaternion	that	represents
rotation.	You	can	specify	the	frame	that	these	coordinates	are	in	as	part	of	the
MoveBaseGoal	argument.	In	our	case,	we’re	using	the	map	frame.	However,	if	you	wanted
to	go	to	an	object,	and	that	object	had	its	own	coordinate	frame	that	ROS	knew	about,	you
could	just	as	easily	use	that.	We’ll	talk	more	about	coordinate	frames	later	on	in	this	book.



Summary
In	this	chapter,	we	saw	how	to	get	a	robot	to	move	about	in	the	world	and	how	to	issue
high-level	commands	that	harness	the	power	of	the	ROS	nav	stack.	We	saw	how	to
localize	the	robot	in	a	map	and	how	to	give	it	navigation	commands	both	with	rviz	and
through	an	action	call	in	our	own	code.	We	also	talked	a	little	about	how	the	navigation
system	in	ROS	works	and	how	to	see	it	working	through	rviz.

The	nav	stack	in	ROS	is	a	complicated	and	highly	configurable	thing,	and	we’ve	barely
scratched	the	surface	of	it	in	this	chapter.	The	navigation	wiki	page	has	a	lot	more	detail,
both	on	how	to	use	the	nav	stack	and	on	how	to	adapt	it	to	work	better	for	your	particular
use	case.	In	particular,	the	move_base	wiki	page	lists	all	of	the	parameters	you	can	set	to
tune	the	performance	of	the	nav	stack.

If	you’re	interested	in	how	the	navigation	system	works	in	detail,	it’s	described	in	David
Lu’s	ROSCon	2014	talk	and	in	this	paper:

David	V.	Lu,	Dave	Hershberger,	and	William	D.	Smart,	“Layered	Costmaps	for
Context-Sensitive	Navigation.”	Proceedings	of	the	IEEE/RSJ	International	Conference
on	Robots	and	Systems	(2014):	709–715.

We’ll	return	to	navigating	a	robot	around	the	world	later	in	the	book,	when	we	look	at	how
to	get	the	robot	to	do	some	something	useful	as	it	patrols	your	building.	Next,	however,
we’re	going	to	look	at	how	to	move	your	robot’s	arms	and	how	to	manipulate	things	in	the
world.
1	This	is	true	of	many	things	in	ROS.	While	it’s	possible	to	use	them	without
understanding	the	underlying	algorithms,	knowing	what’s	going	on	under	the	hood	will	be
invaluable	if	you	ever	need	to	debug	strange	robot	behavior.

http://wiki.ros.org/navigation?distro=indigo
http://wiki.ros.org/move_base?distro=indigo
http://bit.ly/lu_roscon2014




Chapter	11.	Chess-bot

Thus	far,	this	book	has	focused	on	driving	mobile	robots	in	office-like	environments.	This
was	because	planar	robot	navigation	can	be	explored	using	relatively	low-cost	hardware,
and	the	topic	is	sufficiently	valuable,	complex,	and	nuanced	to	use	it	as	a	practical
introduction	to	controlling	robots	using	ROS.	However,	the	field	of	robotics	is	far	larger
than	planar	mobile	robots!	In	this	chapter,	we	will	enter	an	entirely	different	domain:
manipulation.	Unfortunately,	robot	manipulators	are	often	complex	and	expensive
machines,	making	them	less	commonly	found	in	academic	and	hobbyist	laboratories.
Fortunately,	it’s	possible,	and	strongly	encouraged,	to	develop	robot-manipulation
software	entirely	using	the	free	and	open	source	Gazebo	simulator!	In	this	chapter,	we	will
use	Gazebo	extensively	to	demonstrate	how	to	develop	software	for	the	Robonaut	2	(also
known	as	R2),	a	stunning	state-of-the-art	robot	developed	by	NASA	and	GM.	One	copy	of
Robonaut	2	is	actually	on	the	International	Space	Station,	and	the	software	you	will	write
in	this	chapter	will	run	just	as	well	in	the	Gazebo	simulator	on	your	personal	computer	as
it	would	run	on	the	actual	R2	on	the	space	station!

Robotic	manipulators	come	in	an	astonishingly	wide	variety	of	shapes	and	sizes.	Industrial
robotic	manipulators	are	famous	for	performing	tasks	like	welding,	painting,	and	stacking
with	superhuman	power,	speed,	and	endurance.	It	is	important	to	note,	however,	that
despite	how	things	may	appear	at	first	glance,	many	industrial	robot	installations	are
“blind.”	That	is,	the	robotic	spot	welder	or	painter	will	perform	exactly	the	same	operation
whenever	an	object	enters	its	environment,	typically	called	a	workcell.	A	major	effort
when	designing	a	workcell	is	thus	to	ensure	that	the	workpiece	—	for	example,	a	partially
finished	car	body	—	always	arrives	in	precisely	the	same	location	before	the	robotic
manipulator	starts	its	preplanned	motion.	This	is	the	type	of	functionality	that	we	will
develop	in	this	chapter;	we	won’t	use	perceptual	data	until	later	in	the	book.

The	goal	of	this	chapter	is	to	describe	the	fundamentals	of	understanding	and
programming	robot	manipulators,	and	to	demonstrate	how	to	move	robot	manipulators
through	prespecified	environments	using	the	toolchains	of	ROS	and	related	open	source
projects.	We	will	absolutely	not	present	a	complete	theoretical	derivation	of	robotic
manipulation!	That	deserves	an	entire	book	(or	bookshelf)	of	its	own.	In	this	book,	we	will
cover	just	enough	of	the	principles	to	help	explain	the	complexity	of	the	tools.



Joints,	Links,	and	Kinematic	Chains
Robotic	manipulators	are	a	collection	of	joints	held	together	by	a	structure	of	some	sort.	In
classical	robotics,	there	are	two	major	classes	of	manipulator	joints:	revolute	and
prismatic.	Revolute	joints	(also	known	as	rotary	or	pin	joints)	rotate	about	an	axis	of
rotation.	For	example,	your	elbow	behaves	like	a	revolute	joint.	In	contrast,	prismatic
joints	(also	known	as	linear	joints)	move	linearly	along	an	axis	of	motion,	like	a	sliding
door	or	a	telescoping	car	radio	antenna.

Prismatic	joints	are	often	used	where	extreme	precision	is	required,	such	as	in	robots	that
place	tiny	electrical	components	on	circuit	boards,	robotic	imaging	systems	for
microscopy,	or	“3D	printers,”	which	are	typically	prismatic	robots	that	precisely	move	a
plastic	extruder.	Many	robots	include	a	combination	of	revolute	and	prismatic	joints.
However,	to	reduce	the	size,	weight,	and	cost	of	the	robot	while	maximizing	the
workspace	size,	many	manipulators	include	only	revolute	joints.	As	a	result,	for	the
remainder	of	this	chapter,	we	will	exclusively	discuss	revolute	joints.

In	manipulator	terminology,	a	link	is	a	section	of	a	robot	arm	connected	by	a	joint.	For
example,	your	upper	arm	is	a	link,	as	is	your	lower	arm.	Typically,	robotic	links	are	made
from	a	relatively	rigid	material,	such	as	aluminum	or	hard	plastic.	In	this	book,	we	will
assume	that	links	are	truly	rigid.	In	many	domains,	this	assumption	is	not	always	correct,
because	the	links	are	heavily	loaded,	they	are	moving	very	quickly,	or	both,	which
requires	complex	analysis	to	ensure	stable	control.	We	won’t	go	there.	For	the	purposes	of
the	following	discussion,	links	are	rigid	sections	of	material	that	connect	joints.	These
fundamental	terms	are	illustrated	by	the	sketch	in	Figure	11-1.

A	series	of	connected	links	and	joints	is	known	as	a	kinematic	chain.	Knowing	the
geometry	of	a	kinematic	chain	is	a	fundamental	requirement	of	controlling	a	robotic
manipulator.	Usually,	one	side	of	a	kinematic	chain	is	considered	to	be	grounded,	meaning
that	it	is	fixed	with	respect	to	some	other	coordinate	frame,	such	as	a	factory	floor	or	the
torso	of	a	robot.	An	open	kinematic	chain	is	one	in	which	the	non-grounded	side	of	the
chain	is	free	to	move	around	the	workspace.	The	free-floating	side	of	a	manipulator	is
usually	fitted	with	some	sort	of	end	effector,	such	as	a	welding	iron,	a	paint	gun,	a
grinding	wheel,	or	a	general-purpose	gripper	or	suction	cup.



Figure	11-1.	The	fundamental	components	of	robot	manipulators:	joints	and	links

From	a	programming	perspective,	we	want	to	be	able	to	position	the	end	effector	of	a
robot	manipulator	in	any	position	and	orientation	within	its	workspace.	In	an	ideal	world,
this	would	be	easy.	Sadly,	the	real	world	complicates	things,	for	several	reasons.	First,	in
many	robots,	each	joint	has	a	limited	range	of	motion.	Wires,	hoses,	mechanical
structures,	and	other	constraints	often	prevent	manipulator	joints	from	being	able	to	spin
endlessly.	Second,	the	workspace	usually	has	some	obstacles,	such	as	fixed	objects	the
manipulator	must	avoid.	Third,	real-world	robotic	joints	can	only	accelerate	and	decelerate
at	limited	rates.	Motion	planning	is	the	field	of	study	that	addresses	these	issues	(and
more).	To	appreciate	them,	we	will	first	dive	into	a	bit	of	theory.



Joint	Space
When	we	were	considering	planar	mobile	robots,	there	were	only	two	major	coordinate
frames	to	keep	in	mind:	the	map	frame,	which	is	fixed	relative	to	the	environment	and
never	moves;	and	the	robot	frame,	which	is	attached	to	the	robot	and	moves	with	it.	As
described	in	the	previous	chapter,	mobile	robot	localization	algorithms	seek	to	describe
the	relationship	between	the	map	frame	and	the	robot	frame.

In	manipulation,	we	typically	have	many	more	coordinate	frames	to	deal	with:	each	link	of
a	robot	manipulator	has	a	coordinate	frame	that	needs	to	be	described	relative	to	the	link
before	it.	Fortunately,	the	relationships	between	these	frames	are	usually	known	to	a	high
degree	of	precision,	thanks	to	sensors	called	joint	encoders,	which	are	typically	fitted	to
each	joint	of	a	manipulator	and	directly	measure	the	rotational	positions.	The	exact
mechanism	varies:	joint	encoders	can	measure	magnetic,	optical,	resistive,	or	capacitive
phenomena.	However,	after	low-level	processing	(typically	performed	at	high	speed	in
firmware),	most	manipulators	typically	know	the	angular	positions	of	all	their	joints	to
high	precision.	This	vector	of	angles	is	called	the	joint	state,	and	is	fundamental	to	the
analysis	and	control	of	robot	manipulators.

For	the	manipulators	we	will	describe	in	this	book,	the	joint	state	vector	is	simply	a	list	of
joint	angles	that	the	manipulator	hardware	“magically”	produces	for	us.	The	simplest
approach	to	controlling	a	robot	manipulator	is	in	joint	space.	For	purposes	of	illustration,
we	will	present	a	diagram	of	a	two-dimensional	planar	arm,	since	it	projects	nicely	onto	a
two-dimensional	diagram.	Let’s	say	that	you	have	a	task	where	you	want	the	arm	to
endlessly	move	from	position	A	to	position	B.	The	simplest	control	strategy	is	to	measure
the	joint	angles	at	position	A	and	position	B,	and	then	interpolate	between	them	in	joint
space.	And	indeed,	the	manipulator	will	travel	from	position	A	to	position	B.

However,	although	the	trajectory	will	be	linear	in	joint	space,	it	will	not	be	linear	in	the
“real	world,”	or	the	task	space	of	the	end	effector.	Sometimes,	the	task	space	is	called
Cartesian	space	to	emphasize	that	the	end	effector	is	moving	through	a	Cartesian	world,
not	joint	space.	Most	of	the	time,	we	want	to	control	an	end	effector	in	task	space,	not
joint	space.	That	is,	we	want	the	end	effector	to	move	in	straight	lines	in	task	space,	not
straight	lines	in	joint	space.	To	illustrate	this,	let’s	assume	that	we	are	programming	a
robot	to	clean	a	window	that	is	in	front	of	it,	on	a	vertical	wall.	The	robot	needs	to	gently
wipe	the	window	with	its	end	effector.	If	we	place	the	starting	position	at	the	top	of	the
window	and	the	ending	position	at	the	bottom	of	the	window,	a	straightforward	joint-space
interpolation	will	result	in	the	end	effector	crashing	through	the	window,	as	pictured	in
Figure	11-2.	Whoops!

To	explain	what’s	happening,	we	need	to	use	forward	kinematics.	This	is	how	we	convert
from	joint	space	to	task	space;	we	apply	transformations	that	use	our	knowledge	of	the
geometry,	or	kinematics,	of	the	robot	arm.	This	geometry	includes	how	long	each	link	is,
the	angles	between	the	axes	of	rotation,	and	the	joint	angles.	The	math	can	get	messy	to
write	longhand,	but	after	some	simplification	it	always	reduces	to	a	few	matrix



multiplications,	which	computers	are	really	good	at	doing.	The	forward	kinematics
function	thus	transforms	the	joint	state	of	the	manipulator	into	the	task	space	position	of
its	end	effector.	The	forward	kinematics	function	is	fast	and	unambiguous:	you	put	in	a
joint	state,	you	get	out	a	position.	ROS	provides	many	tools	for	this,	most	notably	the	tf
package,	which	will	be	used	later	in	this	chapter.

Figure	11-2.	Poor	motion	planning	causes	the	robot	at	left,	attempting	to	clean	the	window	at	right,	to	break	it	instead

Forward	kinematics	tells	us	where	the	end	of	the	arm	is,	relative	to	the	rest	of	the	robot.
That	is	useful,	but	really	what	we	want	is	the	opposite	operation:	given	a	desired	point	in
the	world	(say,	the	top	of	the	window	we	are	trying	to	clean),	what	should	the	arm’s	joint
angles	be?	This	is	called	inverse	kinematics.



Inverse	Kinematics
Let’s	say	that	we	have	a	task	space	position	A	(the	top	of	the	window)	and	a	task	space
position	B	(the	bottom	of	the	window).	We	want	to	compute	the	joint	states	for	each	of
those	position,	which	we	can	feed	to	joint-space	controllers	to	move	the	arm.

Although	we	can	relatively	quickly	derive	the	inverse	kinematics	equations	for	the	two-
dimensional	arm	shown	in	these	diagrams,	things	will	get	nasty	really	quickly	when	we
move	up	to	arms	with	more	joints.	Once	the	arm	has	more	than	six	joints,	it	gets	even
more	interesting:	there	is	no	longer	a	unique	inverse	kinematics	solution!	Instead,	there
can	be	a	set	or	manifold	of	solutions,	all	of	which	achieve	the	desired	end-effector
position.	For	example,	you	can	hold	your	hand	in	the	same	position	in	front	of	you	and
move	your	elbow	in	an	arc.	That	is	the	one-dimensional	subspace	of	inverse	kinematic
solutions	for	that	particular	location	and	orientation	of	your	hand.	Because	we’re	lazy	and
our	arms	are	heavy,	we	usually	choose	the	solution	where	our	elbow	is	hanging	down.	But
that	is	just	one	out	of	many	possible	arm	configurations	that	result	in	our	hands	staying	in
the	same	place.

It	gets	still	more	complex:	things	that	are	“out	of	reach”	of	the	robot	have	no	inverse
kinematics	solution.	There	is	also	a	nasty	region	right	on	the	edge	of	what	the	robot	can
reach,	where	it	can	achieve	some	end	effector	orientations,	but	not	all.	To	illustrate	this,
imagine	reaching	out	for	something	that	is	just	within	your	reach.	You’ll	find	that	you	can
only	grab	it	in	one	way.	But	once	you	bring	that	object	a	few	inches	closer,	you	can	pick	it
up	in	any	direction	by	reorienting	your	wrist	and	elbow.

To	reiterate:	the	inverse	kinematics	problem	is	really	hard.	For	any	given	position	and
orientation	of	the	end	effector,	there	can	be	infinite,	finite,	or	zero	joint-state	solutions.

Fortunately,	there	are	some	good	inverse	kinematics	software	packages	out	there,
including	several	that	operate	nicely	with	ROS.	You	can	describe	the	arm	geometry	to
these	packages	using	ROS	parameters	and	then	call	ROS	services	to	ask	for	joint-state
solutions	for	desired	end	effector	positions.	Using	such	a	package,	we	could	improve	our
window-cleaning	robot:	we	could	calculate	a	series	of	“waypoints”	along	the	trajectory
from	position	A	to	position	B,	all	of	which	lie	on	the	task	space	straight	line	between	A
and	B.

If	we	calculate	enough	of	these	intermediate	points,	we	may	even	be	able	to	get	the	robot
to	wipe	the	window	without	breaking	it.	But	this	approach	is	still	a	bit	nasty,	due	to	several
concerns	we	haven’t	addressed	yet,	including	singularities	(when	a	joint	is	fully	extended),
limited	ranges	of	motion,	limited	joint	velocities	and	accelerations,	and	obstacles	in	the
environment.	Dealing	with	these	issues	in	a	general	fashion	is	really	hard.	This	is	why
there	are	complex	software	packages	called	motion	planners,	which	take	all	of	these
factors	into	account.	You	simply	tell	them	where	the	manipulator	is,	where	you	want	it	to
be,	and	provide	a	description	of	the	robot	and	its	environment.	The	motion	planner	then
performs	some	impressive	mathematics	and	responds	with	a	trajectory	of	joint	states	that
you	can	feed	to	the	manipulator’s	joint	controllers.	If	all	goes	well,	the	manipulator	end



effector	will	then	smoothly	follow	the	calculated	path	in	the	task	space	while	not	crashing
into	anything.



The	Key	to	Success
Robot	manipulators	are	complex	beasts:	they	have	many	motors	and	mechanical	moving
parts,	they	are	filled	with	flexing	cables	and	electronics,	and	they	have	delicate	sensors
throughout	to	measure	joint	angles	and	forces.	In	other	words,	they	are	expensive	and
prone	to	failure.	Indeed,	working	with	manipulators	offers	wonderful	glimpses	of	an
advanced	technological	future,	contrasted	with	the	sad,	broken	reality	of	the	present	when
a	robot	stops	working.	Just	like	for	any	robotics	domain,	the	key	to	success	when
developing	software	for	robot	manipulation	is	simulation.	For	planar	mobile	robots,	we
were	championing	simulation	from	an	operational	standpoint:	simulated	robot	batteries
can	be	“recharged”	instantly,	you	don’t	have	to	chase	down	the	hallway	after	them	when
debugging,	you	can	simulate	faster	than	reality	to	cover	many	kilometers	of	experiments
very	quickly,	and	so	on.

For	manipulation,	this	rationale	is	even	more	convincing,	since	robot	manipulators	are	far
more	complex	and	expensive.	They	often	have	a	relatively	delicate	end	effector	attached
to	the	very	end	of	the	manipulator,	which	is	of	course	the	part	of	the	manipulator	that
experiences	the	highest	velocities	and	is	most	likely	to	crash	into	something.

So,	like	a	broken	record,	we	will	repeat	it	again:	the	key	to	success	in	robot	manipulation,
as	in	all	areas	in	robotics,	is	simulation.	Throughout	this	book,	we	are	using	simulated
robots	as	development	targets.	For	this	chapter,	we	will	take	advantage	of	the	fact	that
simulation	is	free	in	order	to	program	a	stunningly	beautiful	state-of-the-art	robot:	the
NASA/GM	Robonaut	2.	This	is	a	fun	robot	to	use	in	simulation,	since	one	copy	of	the	R2
is	actually	on	the	International	Space	Station	(see	Figure	11-3).



Figure	11-3.	The	R2	robot	on	the	International	Space	Station	(image	credit:	NASA)

As	you’d	expect	for	a	machine	rated	for	operation	in	space,	the	R2	is	extraordinarily
reliable	and	was	designed	for	high	performance	and	predictability.	As	a	consequence,	it	is
very	expensive	and	is	not	the	type	of	platform	you’d	want	to	use	when	carelessly
experimenting	with	some	new	code	you’ve	hacked	together.	Fortunately,	NASA	has
released	a	Gazebo	model	of	an	R2,	which	we	can	easily	install.	Then,	we	can	instantiate
R2	in	Gazebo	and	aggressively	prototype	our	software,	risking	none	of	the	guilt	associated
with	wrecking	millions	of	dollars’	worth	of	equipment!

Since	the	code	we	will	write	is	generally	robot-agnostic,	everything	we	learn	about
controlling	an	R2	in	Gazebo	can	be	applied	to	other	robots	(it	just	looks	cooler	on	an	R2).
So,	let’s	get	started.



Installing	and	Running	a	Simulated	R2
The	following	commands	will	check	out	the	latest	version	of	the	R2	simulation	model	for
Gazebo	and	the	R2	controllers,	as	well	as	installing	some	more	ROS	packages	from	the
build	farm:

user@hostname$	sudo	apt-get	install	ros-indigo-ros-control	\

		ros-indigo-gazebo-ros-control	ros-indigo-joint-state-controller	\

		ros-indigo-effort-controllers	ros-indigo-joint-trajectory-controller	\

		ros-indigo-moveit*	ros-indigo-octomap*	ros-indigo-object-recognition-*

user@hostname$	mkdir	-p	~/chessbot/src

user@hostname$	cd	~/chessbot/src

user@hostname$	git	clone	-b	indigo	\

		https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator.git

user@hostname$	git	clone	-b	indigo	\

		https://bitbucket.org/nasa_ros_pkg/nasa_r2_common.git

user@hostname$	cd	..

user@hostname$	catkin_make

Now,	we	can	load	our	newly	built	R2	simulation	workspace	and	start	up	an	R2	in	Gazebo:

cd	~/chessbot

source	devel/setup.bash

roslaunch	r2_gazebo	r2_gazebo.launch

This	will	launch	Gazebo	with	a	world	file	that	includes	an	R2	and	looks	something	like
Figure	11-4.



Figure	11-4.	The	starting	configuration	of	the	R2	simulation

Thanks	to	the	wonders	of	robot	simulation	and	the	abstraction	layers	of	ROS,	we	can	now
write	software	for	the	R2	that	will	run	identically	either	on	this	simulation	or	on	a	real
robot.	To	start,	let’s	make	the	R2	wave	its	arms	around	randomly.	To	do	this,	we	will	use
MoveIt,	a	comprehensive	motion	planning	package	that	interacts	nicely	with	ROS.
Fortunately	for	us,	MoveIt	already	includes	all	of	the	configuration	details	for	the	R2,	such
as	the	geometries	of	all	its	links,	the	joint	positions	and	orientations,	and	so	on.	We	can
simply	tell	MoveIt	where	we	want	the	end	effectors	to	be	positioned,	and	MoveIt	will
perform	the	necessary	high-dimensional	computational	geometry	to	produce	a	collision-
free	path	to	the	goal.

First,	we	need	to	run	a	robot_state_publisher	node,	which	will	use	the	geometric
descriptions	of	the	R2	and	its	joint	state	vector	to	continually	calculate	all	of	the
coordinate	frames	of	the	robot	(i.e.,	it	computes	forward	kinematics).	The	standard	ROS
implementation	of	this	operation	is	robot-neutral,	so	we	can	just	start	it	up,	and	it	will	do
the	right	thing	for	the	R2:

user@hostname$	rosrun	robot_state_publisher	robot_state_publisher

Now,	we	have	a	console	that	has	spawned	the	R2	simulator	(r2_gazebo),	a	console	that	is
running	robot_state_publisher,	and	a	graphical	window	showing	the	R2	simulation.	We
can	now	get	a	new	terminal	and	start	MoveIt,	configured	for	the	R2:



*cd*	~/chessbot

source	devel/setup.bash

roslaunch	r2_moveit_config	move_group.launch

This	will	start	a	number	of	programs,	topics,	and	services,	and	set	a	large	number	of
parameters.	MoveIt	is	a	very	complex	piece	of	software,	and	a	full	explanation	of	its	inner
workings	is	beyond	the	scope	of	this	book.	For	the	purposes	of	this	chapter,	we	can	give
MoveIt	target	positions	for	the	R2	hands,	and	it	will	find	and	follow	a	smooth	trajectory	to
get	there.

The	program	shown	in	Example	11-1	will	continually	generate	random	poses	for	the
hands	of	the	Robonaut	2,	so	it	will	wave	its	arms	around	endlessly.	Note,	however,	that	the
behavior	is	not	purely	random:	the	planner	will	seek	to	keep	the	elbows	in	the	middle	of
their	ranges	of	motion.	This	prevents	the	robot	from	nearing	the	singularities	or	collisions
that	can	occur	if	the	elbow	gets	jammed	up	against	the	torso	or	flies	up	toward	the	vertical.
You’ll	also	notice	that	the	joint	velocities	smoothly	ramp	up	and	down	during	acceleration
and	deceleration	of	the	arms.	All	of	this	is	critical	to	producing	smooth,	reliable
trajectories	on	real	robots.	The	full	source	code	follows.

Example	11-1.	r2_mime.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	moveit_commander,	random

from	geometry_msgs.msg	import	Pose,	Point,	Quaternion

from	math	import	pi

orient	=	[Quaternion(*tf.transformations.quaternion_from_euler(pi,	-pi/2,	-pi/2)),

										Quaternion(*tf.transformations.quaternion_from_euler(pi,	-pi/2,	-pi/2))]	

pose	=	[Pose(Point(	0.5,	-0.5,	1.3),	orient[0]),

								Pose(Point(-0.5,	-0.5,	1.3),	orient[1])]	

moveit_commander.roscpp_initialize(sys.argv)	

rospy.init_node('r2_wave_arm',anonymous=True)

group	=	[moveit_commander.MoveGroupCommander("left_arm"),

									moveit_commander.MoveGroupCommander("right_arm")]

#	now,	wave	arms	around	randomly

while	not	rospy.is_shutdown():

		pose[0].position.x	=		0.5	+	random.uniform(-0.1,	0.1)

		pose[1].position.x	=	-0.5	+	random.uniform(-0.1,	0.1)

		for	side	in	[0,1]:

				pose[side].position.z	=		1.5	+	random.uniform(-0.1,	0.1)

				group[side].set_pose_target(pose[side])

				group[side].go(True)

moveit_commander.roscpp_shutdown()

The	quaternion_from_euler()	function	converts	orientations	between	the	Euler-
angle	representation	(roll/pitch/yaw),	which	is	relatively	intuitive,	and	the	quaternion
representation,	which	is	used	by	most	computational	geometry	packages	because	of
its	numerical	stability	but	unfortunately	is	very	difficult	to	intuitively	understand.

The	orientations	created	by	the	previous	lines	are	used	to	stuff	the	Pose	messages.

moveit_commander	is	the	Python	interface	to	the	MoveIt	motion	planning	system.

The	robot	moves!	Hooray!	That	little	program	will	choose	random	positions	for	the	R2’s
palms	that	lie	on	a	vertical	plane	just	in	front	of	the	robot.	Every	second	or	so,	it	will



choose	a	new	point	on	that	plane	and	then	move	the	robot’s	palms	to	lie	flat	on	the	plane
for	each	arm,	as	shown	in	Figure	11-5.

Figure	11-5.	A	simulated	R2	mime

The	benefits	of	MoveIt	are	clearly	apparent	in	this	simple	little	program.	Notice	how	we
didn’t	need	to	know	anything	about	the	joint	limits,	link	lengths,	acceleration/deceleration
capabilities,	or	really	anything	about	the	R2?	We	simply	told	MoveIt	where	we	wanted	the
hands	to	go,	and	it	figured	out	everything	else.



Moving	R2	from	the	Command	Line
Now,	let’s	create	a	simple	interface	where	we	can	type	in	arm	poses	and	have	the	R2
nicely	move	its	arms	to	those	positions	using	MoveIt.	Example	11-2	is	just	a	refactoring	of
the	previous	code	snippet,	wrapping	it	up	into	something	that	will	be	a	bit	easier	to	reuse.

Example	11-2.	r2_cli.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	moveit_commander,	random

from	geometry_msgs.msg	import	Pose,	Point,	Quaternion

class	R2Wrapper:

		def	__init__(self):

				self.group	=	{'left':	moveit_commander.MoveGroupCommander("left_arm"),

																		'right':	moveit_commander.MoveGroupCommander("right_arm")}

		def	setPose(self,	arm,	x,	y,	z,	phi,	theta,	psi):

				if	arm	!=	'left'	and	arm	!=	'right':

						raise	ValueError("unknown	arm:	'%s'"	%	arm)

				orient	=	\

						Quaternion(*tf.transformations.quaternion_from_euler(phi,	theta,	psi))	

				pose	=	Pose(Point(x,	y,	z),	orient)

				self.group[arm].set_pose_target(pose)

				self.group[arm].go(True)

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('r2_cli',anonymous=True)

		argv	=	rospy.myargv(argv=sys.argv)	#	filter	out	any	arguments	used	by	ROS

		if	len(argv)	!=	8:

				print	"usage:	r2_cli.py	arm	X	Y	Z	phi	theta	psi"

				sys.exit(1)

		r2w	=	R2Wrapper()

		r2w.setPose(argv[1],	*[float(num)	for	num	in	sys.argv[2:]])

		moveit_commander.roscpp_shutdown()

The	quaternion_from_euler()	function	does	the	trigonometry	required	to	convert
between	the	Euler-angle	and	quaternion	representations	of	an	orientation.

With	this	little	wrapper	program,	we	can	type	commands	at	the	shell	to	move	the	arms
around,	like	these	few	examples:

user@hostname$	./r2_cli.py	left			0.5	-0.5	1.3	3.14	-1.5	-1.57

user@hostname$	./r2_cli.py	right	-0.4	-0.6	1.4	3.14	-1.5	-1.57

user@hostname$	./r2_cli.py	left			0.4	-0.4	1.2	3.14	-1.5	-1.57	

Now,	at	first	glance,	it	might	seem	like	typing	random	six-dimensional	coordinates	at	the
command	line	isn’t	a	particularly	elegant	user	interface.	It	is,	indeed,	rather	terrible.
However,	we	can	use	this	building	block	to	create	some	command-line	aliases,	so	that	our
shell	becomes	more	useful	for	running	the	R2.	We	can	put	these	aliases	into	a	simple	text
file	that	the	command	shell	(bash)	can	read,	named	r2.bash,	as	shown	in	Example	11-3.

Example	11-3.	r2.bash
#!/bin/bash

alias	r2lhome="./r2_cli.py	left			0.5	-0.5	1		1.57	0	-1.57"

alias	r2rhome="./r2_cli.py	right	-0.5	-0.5	1	-1.57	0	-1.57"

alias	r2home="r2lhome;r2rhome"

To	load	these	aliases	into	the	current	shell,	type	source	./r2.bash	at	the	command	line.
You	can	then	simply	type	r2home,	and	the	robot	will	plan	a	safe	path	to	its	home	position



and	smoothly	execute	it.

For	most	robots,	there	are	typically	a	few	postures	that	are	useful	for	many	tasks,	or	even
just	for	daily	operation	and	maintenance.	A	small	command-line	program	and	a	few	bash
aliases	like	this	can	make	life	much	more	convenient.



Moving	R2	Around	a	Chessboard
The	previous	R2Wrapper	class	accepted	six-dimensional	coordinates	for	its	pose	targets:
the	three-dimensional	Cartesian	(x,	y,	z)	coordinates,	and	a	description	of	the	desired
rotation	of	the	hand	using	Euler	angles	(roll,	pitch,	and	yaw).	For	example,	we	could	ask
the	R2	robot	to	position	its	hand	30	centimeters	above,	20	centimeters	to	the	right,	and	10
centimeters	in	front	of	its	torso,	with	its	palm	facing	outward	(0	degrees	roll,	90	degrees
pitch,	0	degrees	yaw),	to	prepare	for	a	high-five	maneuver.	Specifying	commands	in	six
dimensions	is	a	useful	way	to	express	the	desired	manipulator	behavior	of	a	robot	when
we	must	be	as	general-purpose	as	possible.	It’s	fun	for	the	first	few	times	to	type	6D
coordinates	at	the	command	line,	but	it	gets	old	quickly.	Often,	it	is	much	more	convenient
to	describe	the	robot’s	postures	in	terms	of	the	task	the	robot	is	supposed	to	be	doing.

As	an	example	of	this	type	of	task,	we	will	build	a	Chess-bot.	It	will	thus	be	convenient	to
describe	the	positions	of	the	arms	in	chessboard	coordinates.	The	standard	way	of
describing	a	chessboard	is	to	use	a	letter	for	a	row	(also	known	as	a	“rank”	in	chess)	and	a
number	for	a	column	(called	a	“file”	in	chess)	—	for	example,	g2,	a3,	f1,	a8,	and	so	on.

Example	11-4	builds	upon	our	previous	example,	showing	one	way	to	accept	command-
line	instructions	for	commanding	the	R2’s	left	arm	to	move	to	the	designated	chessboard
rank	and	file,	and	also	specifying	the	desired	height	above	the	chessboard.

Example	11-4.	r2_chessboard_cli.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	moveit_commander,	random

from	geometry_msgs.msg	import	Pose,	Point,	Quaternion

class	R2ChessboardWrapper:

		def	__init__(self):

				self.left_arm	=	moveit_commander.MoveGroupCommander("left_arm")

		def	setPose(self,	x,	y,	z,	phi,	theta,	psi):

				orient	=	\

						Quaternion(*tf.transformations.quaternion_from_euler(phi,	theta,	psi))

				pose	=	Pose(Point(x,	y,	z),	orient)

				self.left_arm.set_pose_target(pose)

				self.left_arm.go(True)

		def	setSquare(self,	square,	height_above_board):

				if	len(square)	!=	2	or	not	square[1].isdigit():

						raise	ValueError(

								"expected	a	chess	rank	and	file	like	'b3'	but	found	%s	instead"	%

								square)

				rank_y	=	-0.3	-	0.05	*	(ord(square[0])	-	ord('a'))

				file_x	=		0.5	-	0.05	*	int(square[1])

				z	=	float(height_above_board)	+	1.0

				self.setPose(file_x,	rank_y,	z,	3.14,	0.3,	-1.57)

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('r2_chessboard_cli')

		argv	=	rospy.myargv(argv=sys.argv)	#	filter	out	any	arguments	used	by	ROS

		if	len(argv)	!=	3:

				print	"usage:	r2_chessboard.py	square	height"

				sys.exit(1)

		r2w	=	R2ChessboardWrapper()

		r2w.setSquare(*argv[1:])

		moveit_commander.roscpp_shutdown()

With	this	program,	we	can	now	command	the	R2	to	move	its	arm	around	in	chess



coordinates,	like	this:

user@hostname$	./r2_chessboard_cli.py	a2	0.04

This	commands	the	arm	to	a	pose	that	is	4	cm	above	square	a2.	Progress!

We	must	now	stop	and	come	to	terms	with	something:	this	approach	of	hardcoding	a
bunch	of	constants	into	the	control	code	is	exceedingly	brittle.	How	did	we	know	that	the
chessboard	is	1	meter	above	the	floor	and	30	cm	in	front	of	the	R2?	What	if	our	robot
were	in	a	boisterous	chess	club	where	the	chessboard	could	be	bumped	and	moved	a	few
centimeters?	The	robot	would	have	no	idea.	When	it	tried	to	move	a	piece,	it	would	miss,
which	would	be	embarrassing.	It	would	lose	the	chess	match.

And	yet,	many	successful	robots	are	programmed	precisely	like	this.	Most	“classical”
industrial	robots,	for	example,	operate	conceptually	in	the	same	manner	as	the	previous
script:	various	important	poses	are	“taught”	to	the	robot	by	skilled	operators	using	a	“teach
pendant”	that	allows	them	to	fly	the	robot	arm	to	various	key	positions	and	record	them.
So	long	as	the	environment	and	task	never	change,	as	is	the	case	in	many	industrial
applications,	this	works	perfectly	well.	Just	don’t	try	it	in	a	rowdy	chess	club!

In	later	chapters	in	this	book,	we	will	introduce	various	perception	algorithms	and	libraries
that	allow	robots	to	respond	to	changes	in	their	environment	or	task.	But	for	the	remainder
of	this	chapter,	we	will	assume	that	the	world	is	perfectly	known	ahead	of	time.



Operating	the	Hand
Now	that	we	can	move	the	R2’s	palm	above	the	chess	squares,	we	need	to	be	able	to	open
and	close	the	fingers.	We	will	use	MoveIt	again,	but	this	time	we	will	just	be	sending	the
target	joint	vectors	to	MoveIt.	For	our	Chess-bot,	we	will	only	need	two	states	for	the
hand:	a	“pinch”	grasp	of	some	sort,	and	a	pose	that	we	will	use	just	before	pinching,	which
we’ll	call	“pre-pinch.”	We	can	hardcode	those	postures	and	send	them	to	MoveIt,	which
will	then	ensure	that	acceleration/deceleration	limits	are	observed	and	that	self-collisions
do	not	occur	—	since	we	don’t	want	to	have	the	fingers	crash	into	each	other.	Although
there	are	more	sophisticated	approaches,	this	strategy	of	hardcoding	a	few	useful	postures
is	common	in	robotics,	especially	in	domains	where	the	environment	is	perfectly	known
ahead	of	time.	We	will	take	this	approach	in	Example	11-5,	where	two	predefined	joint
vectors	will	be	used	to	create	“open”	and	“closed”	hand	positions	to	grasp	the	chess
pieces.

Example	11-5.	r2_hand.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	moveit_commander,	random

from	geometry_msgs.msg	import	Pose,	Point,	Quaternion

class	R2Hand:

		def	__init__(self):

				self.left_hand	=	moveit_commander.MoveGroupCommander("left_hand")

		def	setGrasp(self,	state):

				if	state	==	"pre-pinch":

						vec	=	[	0.3,	0,	1.57,	0,		#	index

														-0.1,	0,	1.57,	0,	#	middle

														0,	0,	0,										#	ring

														0,	0,	0,										#	pinkie

														0,	1.1,	0,	0]					#	thumb

				elif	state	==	"pinch":

						vec	=	[	-0.1,	0,	1.57,	0,

														0,	0,	1.57,	0,

														0,	0,	0,

														0,	0,	0,

														0,	1.1,	0,	0]

				elif	state	==	"open":

						vec	=	[0]	*	18

				else:

						raise	ValueError("unknown	hand	state:	%s"	%	state)

				self.left_hand.set_joint_value_target(vec)

				self.left_hand.go(True)

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('r2_hand')

		argv	=	rospy.myargv(argv=sys.argv)	#	filter	out	any	arguments	used	by	ROS

		if	len(argv)	!=	2:

				print	"usage:	r2_hand.py	STATE"

				sys.exit(1)

		r2w	=	R2Hand()

		r2w.setGrasp(argv[1])

The	program	in	Example	11-5	will	let	us	type	on	the	command	line	to	command	three
hand	postures	to	R2:	open,	pre-pinch,	and	pinch.	Because	of	a	joint	limit	on	the	thumb
travel,	we	will	be	doing	a	pinch	grasp	between	the	sides	of	the	index	and	middle	fingers.	It
looks	a	little	unusual,	but	it	works!	Using	r2_hand.py,	we	can	produce	the	two	postures
shown	in	Figure	11-6	and	Example	11-7:



user@hostname$	./r2_hand.py	pre-pinch

user@hostname$	./r2_hand.py	pinch

Figure	11-6.	The	pre-pinch	hand	posture

Figure	11-7.	The	pinch	hand	posture

Now,	it’s	time	to	make	a	chessboard!



Modeling	a	Chessboard
A	large	part	of	the	effort	in	robot	simulation	is	spent	in	modeling	the	environment	of
interest.	At	first,	this	can	seem	like	time	not	particularly	well	spent.	After	all,	we’re	trying
to	control	a	robot,	not	stare	at	a	computer!	But	developing	the	model	quickly	pays	huge
dividends:	unlike	in	the	real	world,	you	can	click	a	button	and	instantly	reset	the	world	to
the	exact	same	configuration.	This	is	incredibly	useful.	But,	back	to	chess!

There	are	many	ways	to	create	simulation	models	and	worlds	in	ROS,	but	in	this	case,	we
are	using	the	Robonaut	2	world	released	by	NASA.	Although	we	could	copy	their	world
and	launch	files	and	modify	them,	it	is	easier	to	instantiate	the	chessboard	and	pieces	from
Python	by	spawning	the	models	inside	an	existing	running	simulation.	This	approach	also
allows	us	to	reset	the	game	board	as	necessary,	without	having	to	restart	the	simulation.
This	will	be	convenient	as	we	are	tuning	the	motion	sequences.

The	first	step	is	to	model	a	chess	piece.	This	can	be	an	arbitrarily	complex	process,
depending	on	the	desired	level	of	fidelity.	Right	now,	we	want	to	keep	it	as	simple	as
possible,	so	we	are	modeling	chess	pieces	just	as	identical	blocks.	Models	in	Gazebo	can
be	represented	in	several	XML	formats,	but	the	currently	recommended	format	for	new
models	is	the	Simulation	Description	Format	(SDF).	Our	rectangular	chess-piece	model	is
represented	in	the	SDF	XML	shown	in	Example	11-6.	This	listing	is	rather	long	and	can
appear	tedious,	but	we	wanted	to	provide	a	full	example	that	shows	how	to	model	a	simple
object	in	Gazebo	because	when	important	SDF	tags	are	omitted	(for	example,	inertia,	or
collision,	or	contact),	the	simulation	can	behave	in	confusing	or	counterintuitive	ways.

Example	11-6.	chess_piece.sdf
<?xml	version='1.0'?>

<sdf	version	='1.4'>

		<model	name	='piece'>

				<link	name	='link'>

						<inertial>

								<mass>0.001</mass>

								<inertia>

										<ixx>0.0000001667</ixx>

										<ixy>0</ixy>

										<ixz>0</ixz>

										<iyy>0.0000000667</iyy>

										<iyz>0</iyz>

										<izz>0.0000001667</izz>

								</inertia>

						</inertial>

						<collision	name="collision">

								<geometry>

										<box><size>0.02	0.02	0.04</size></box>

								</geometry>

								<surface>

										<friction>

												<ode>

														<mu>0.4</mu>

														<mu2>0.4</mu2>

												</ode>

										</friction>

										<contact>

												<ode>

														<max_vel>0.1</max_vel>

														<min_depth>0.0001</min_depth>

												</ode>

										</contact>

								</surface>



						</collision>

						<visual	name="visual">

								<geometry>

										<box><size>0.02	0.02	0.04</size></box>

								</geometry>

						</visual>

				</link>

		</model>

</sdf>

We	will	also	represent	the	chessboard	as	a	very	wide,	flat	box	in	SDF,	as	shown	in
Example	11-7.	This	SDF	listing	is	simpler,	because	the	chessboard	will	be	treated	as	an
immovable	object	in	the	simulation	and	thus	does	not	need	its	inertial	properties	to	be
defined.

Example	11-7.	chess_board.sdf
<?xml	version='1.0'?>

<sdf	version	='1.4'>

		<model	name	='box'>

				<static>true</static>

				<link	name	='link'>

						<collision	name="collision">

								<geometry>

										<box><size>0.5	0.5	0.02</size></box>

								</geometry>

								<surface>

										<friction>

												<ode>

														<mu>0.1</mu>

														<mu2>0.1</mu2>

												</ode>

										</friction>

										<contact>

												<ode>

														<max_vel>0.1</max_vel>

														<min_depth>0.001</min_depth>

												</ode>

										</contact>

								</surface>

						</collision>

						<visual	name="visual">

								<geometry>

										<box><size>0.5	0.5	0.02</size></box>

								</geometry>

						</visual>

				</link>

		</model>

</sdf>

Now,	we	need	a	script	that	can	spawn	and	place	these	models	in	a	running	simulation,
since	we	will	be	knocking	over	a	lot	of	chess	pieces.	As	before,	there	are	many	ways	to	do
this.	In	this	case,	we’ll	demonstrate	how	to	spawn	models	in	Python.	Gazebo	provides
ROS	services	for	deleting	and	spawning	models	(among	other	tasks),	which	we	will	use	to
set	up	the	board.	Because	the	board	may	already	exist	in	the	simulation,	Example	11-8
first	tries	to	delete	the	pieces	before	spawning	new	ones.

Example	11-8.	spawn_chessboard.py
#!/usr/bin/env	python

import	sys,	rospy,	tf

from	gazebo_msgs.srv	import	*

from	geometry_msgs.msg	import	*

from	copy	import	deepcopy

if	__name__	==	'__main__':

		rospy.init_node("spawn_chessboard")

		rospy.wait_for_service("gazebo/delete_model")

		rospy.wait_for_service("gazebo/spawn_sdf_model")



		delete_model	=	rospy.ServiceProxy("gazebo/delete_model",	DeleteModel)

		delete_model("chessboard")

		s	=	rospy.ServiceProxy("gazebo/spawn_sdf_model",	SpawnModel)

		orient	=	Quaternion(*tf.transformations.quaternion_from_euler(0,	0,	0))

		board_pose	=	Pose(Point(0.25,1.39,0.90),	orient)

		unit	=	0.05

		with	open("chessboard.sdf",	"r")	as	f:

				board_xml	=	f.read()

		with	open("chess_piece.sdf",	"r")	as	f:

				piece_xml	=	f.read()

		print	s("chessboard",	board_xml,	"",	board_pose,	"world")

		for	row	in	[0,1,6,7]:

				for	col	in	xrange(0,8):

						piece_name	=	"piece_%d_%d"	%	(row,	col)

						delete_model(piece_name)

						pose	=	deepcopy(board_pose)

						pose.position.x	=	board_pose.position.x	-	3.5	*	unit	+	col	*	unit

						pose.position.y	=	board_pose.position.y	-	3.5	*	unit	+	row	*	unit

						pose.position.z	+=	0.02

						s(piece_name,	piece_xml,	"",	pose,	"world")

That’s	it!	Now,	whenever	we	want	to	reset	the	chessboard	in	our	running	R2	simulation,
we	can	just	run	the	spawn_chessboard.py	script.	The	resulting	setup	looks	like	Figure	11-
8.



Figure	11-8.	A	Gazebo	screenshot	of	the	R2	chess	simulation



Playing	Back	a	Famous	Chess	Game
Now	we	will	put	all	the	elements	of	this	chapter	together.	We	have	written	scripts	that	can
smoothly	navigate	the	arm	to	the	(predefined)	locations	of	chess	squares,	open	and	close
the	fingers,	and	set	up	the	chessboard.	Now,	we	can	put	all	of	this	together	to	“play	back”
chess	game	descriptions.	But	where	do	we	find	the	game	logs?	Fortunately,	that	is	not	a
problem	with	chess.	It	is	one	of	the	most	well-documented	games	in	existence.	There	are
several	textfile	formats	for	chess	games,	including	one	called	Portable	Game	Notation
(PGN).	Fortunately,	there	is	already	an	open	source	Python	parser	for	PGN	files.	We	can
install	it	like	so:

sudo	apt-get	install	python-pip

sudo	pip	install	pgnparser

Your	authors	are	not	great	chess	players.	In	fact,	we	are	quite	terrible.	We	played	a	quick
game	against	the	computer	and	were	soundly	defeated.	For	the	benefit	of	science,	we
recorded	our	inglorious	defeat	to	PGN	format	and	used	pgn-extract	to	convert	it	to
standard	chess	long	algebraic	notation.	Our	defeat	is	thus	completely	described	in	the
following	descriptions	of	chess	moves,	each	one	taking	us	closer	to	checkmate:

1.	e2e4	c7c5	2.	d2d4	c5d4	3.	d1d4	b8c6	4.	c2c4	c6d4	5.	b1c3	d4c2+	6.	e1d1

c2a1	7.	a2a4	e7e5	8.	c1g5	d8g5	9.	c3d5	g5d8	10.	f2f4	e5f4	11.	g1f3	g8f6	12.

d5f6+	d8f6	13.	f1d3	f6b2	14.	h1e1	b2g2	15.	e1e2	g2f3	16.	d1c1	f3d3	17.	e2e1

d3c2#	0-1

We	can	use	the	pgnparser	library	to	parse	that	block	of	text	into	something	easier	to	feed
to	our	command-line	parser,	written	in	the	previous	section.	The	pgn.loads()	function
will	read	the	game	description	into	a	Python	list	of	well-defined	move	strings.	We	then
parse	these	strings	in	playGame()	to	create	simple	scripted	motions	to	pick	up	pieces	and
move	them	to	their	landing	places,	as	shown	in	Example	11-9.

Example	11-9.	r2_chess_pgn.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	moveit_commander,	random

from	geometry_msgs.msg	import	Pose,	Point,	Quaternion

import	pgn

class	R2ChessboardPGN:

		def	__init__(self):

				self.left_arm	=	moveit_commander.MoveGroupCommander("left_arm")

				self.left_hand	=	moveit_commander.MoveGroupCommander("left_hand")

		def	setGrasp(self,	state):

				if	state	==	"pre-pinch":

						vec	=	[	0.3,	0,	1.57,	0,		#	index

														-0.1,	0,	1.57,	0,	#	middle

														0,	0,	0,										#	ring

														0,	0,	0,										#	pinkie

														0,	1.1,	0,	0]							#	thumb

				elif	state	==	"pinch":

						vec	=	[	0,	0,	1.57,	0,

														0,	0,	1.57,	0,

														0,	0,	0,

														0,	0,	0,

														0,	1.1,	0,	0]

				elif	state	==	"open":



						vec	=	[0]	*	18

				else:

						raise	ValueError("unknown	hand	state:	%s"	%	state)

				self.left_hand.set_joint_value_target(vec)

				self.left_hand.go(True)

		def	setPose(self,	x,	y,	z,	phi,	theta,	psi):

				orient	=	\

						Quaternion(*tf.transformations.quaternion_from_euler(phi,	theta,	psi))

				pose	=	Pose(Point(x,	y,	z),	orient)

				self.left_arm.set_pose_target(pose)

				self.left_arm.go(True)

		def	setSquare(self,	square,	height_above_board):

				if	len(square)	!=	2	or	not	square[1].isdigit():

						raise	ValueError(

								"expected	a	chess	rank	and	file	like	'b3'	but	found	%s	instead"	%

								square)

				print	"going	to	%s"	%	square

				rank_y	=	-0.24	-	0.05	*	int(square[1])

				file_x	=		0.5	-	0.05	*	(ord(square[0])	-	ord('a'))

				z	=	float(height_above_board)	+	1.0

				self.setPose(file_x,	rank_y,	z,	3.14,	0.3,	-1.57)

		def	playGame(self,	pgn_filename):

				game	=	pgn.loads(open(pgn_filename).read())[0]

				self.setGrasp("pre-pinch")

				self.setSquare("a1",	0.15)

				for	move	in	game.moves:

						self.setSquare(move[0:2],	0.10)

						self.setSquare(move[0:2],	0.015)

						self.setGrasp("pinch")

						self.setSquare(move[0:2],	0.10)

						self.setSquare(move[2:4],	0.10)

						self.setSquare(move[2:4],	0.015)

						self.setGrasp("pre-pinch")

						self.setSquare(move[2:4],	0.10)

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('r2_chess_pgn',anonymous=True)

		argv	=	rospy.myargv(argv=sys.argv)	#	filter	out	any	arguments	used	by	ROS

		if	len(argv)	!=	2:

				print	"usage:	r2_chess_pgn.py	PGNFILE"

				sys.exit(1)

		print	"playing	%s"	%	argv[1]

		r2pgn	=	R2ChessboardPGN()

		r2pgn.playGame(argv[1])

		moveit_commander.roscpp_shutdown()

That’s	it!	We	can	now	play	back	any	famous	(or	not	so	famous)	chess	game	stored	in	PGN
format	on	our	simulated	R2,	as	seen	in	Figure	11-9.	However,	you	will	soon	notice	that
eventually	some	pieces	get	knocked	over	(Figure	11-10)	and	that	we	have	intentionally
left	out	some	crucial	components	of	a	world-class	Chess-bot.	For	example,	we	have	not
coded	up	what	should	happen	when	R2	captures	a	piece.	The	script	will	try	to	smash	the
captured	piece	with	the	capturing	piece,	so	one	of	them	will	go	flying	across	the	simulator.
We	leave	these	details	as	an	exercise	to	the	motivated	reader!



Summary
Of	course,	this	chapter	was	not	just	about	building	Chess-bots,	awesome	though	they	are.
It	was	intended	to	demonstrate	how	we	can	use	MoveIt	to	quickly	build	applications
where	we	pick	and	place	items	between	predefined	locations.	Pick-and-place	tasks	have
enormous	economic	impact	in	the	world	of	industrial	robotics.	At	their	core,	these	tasks
are	not	that	different	from	those	performed	by	a	Chess-bot!

Thus	far,	we	have	primarily	been	building	robotic	systems	without	sensory	input.
Although	a	surprisingly	large	(and	valuable)	number	of	tasks	can	be	done	without	sensor
processing,	many	exciting	new	robotics	applications	rely	on	extensive	perceptual	systems.
In	the	next	chapter,	we	will	start	adding	sensors	to	our	simulated	robots.



Figure	11-9.	R2	playing	back	a	chess	game



Figure	11-10.	Eventually,	some	pieces	get	knocked	over	—	it	happens	to	all	of	us!



Part	III.	Perception	and	Behavior





Chapter	12.	Follow-bot

The	previous	several	chapters	were	mostly	concerned	with	getting	robots	to	move	around:
either	moving	the	robot	base	for	locomotion	or	moving	a	robot	arm	for	manipulation.
Most	of	the	systems	we’ve	built	thus	far	would	be	considered	open-loop	systems,	meaning
that	they	have	no	feedback	loop.	That	is,	these	systems	do	not	use	sensor	data	to	correct
for	errors	that	accumulate	over	time.	In	this	chapter,	we	will	start	working	with	sensors	to
create	closed-loop	systems	that	compute	errors	and	feed	them	back	into	the	control
system,	with	the	goal	of	reducing	errors	of	various	sorts.

Let’s	start	by	creating	a	robot	that	can	follow	lines	on	the	ground	using	a	camera.	We	will
do	this	using	OpenCV,	a	popular	open	source	computer	vision	library.	To	build	this
system,	we	will	need	to	do	the	following	steps:

Acquire	images	from	a	camera	and	pass	them	to	OpenCV.

Filter	the	images	to	identify	the	center	of	the	line	we	are	to	follow.

Steer	the	robot	so	that	the	center	of	the	robot	stays	on	the	center	of	the	line.

This	will	be	a	closed-loop	system:	the	robot	will	sense	the	steering	error	as	it	drifts	off	the
line	and	then	steer	back	toward	the	center	of	the	line.	As	we	have	always	been	doing	in
this	book,	we	will	develop	this	entire	application	in	simulation.	First,	we	will	show	how	to
subscribe	to	images	in	ROS.



Acquiring	Images
Images	in	ROS	are	sent	around	the	system	using	the	sensor_msgs/Image	message	type.
To	have	images	stream	into	our	nodes,	we	need	to	subscribe	to	a	topic	where	they	are
being	published.	Each	robot	will	have	its	own	method	for	doing	this,	and	names	may	vary.
We	will	explore	how	to	find	the	topic	names	using	a	Turtlebot	simulation.	To	get	started,
start	three	terminals:	one	for	roscore,	one	for	the	TurtleBot	simulation	in	Gazebo,	and	one
for	interactive	commands.

Start	roscore	in	the	first	terminal:

user@hostname$	roscore

In	the	second	terminal,	start	a	Turtlebot	simulation:

user@hostname$	roslaunch	turtlebot_gazebo	turtlebot_world.launch

Now,	in	the	third	terminal,	we’ll	run	some	interactive	shell	commands.	If	this	is	our	first
time	using	this	particular	robot,	we	may	not	know	what	topics	will	contain	the	robot’s
camera	data.	So,	let’s	sniff	around	a	bit:

user@hostname$	rostopic	list

This	prints	out	a	few	dozen	topics,	some	of	which	sound	image-related:

/camera/depth/camera_info

/camera/depth/image_raw

/camera/depth/points

/camera/parameter_descriptions

/camera/parameter_updates

/camera/rgb/camera_info

/camera/rgb/image_raw

/camera/rgb/image_raw/compressed

/camera/rgb/image_raw/compressed/parameter_descriptions

/camera/rgb/image_raw/compressed/parameter_updates

/camera/rgb/image_raw/compressedDepth

/camera/rgb/image_raw/compressedDepth/parameter_descriptions

/camera/rgb/image_raw/compressedDepth/parameter_updates

/camera/rgb/image_raw/theora

/camera/rgb/image_raw/theora/parameter_descriptions

/camera/rgb/image_raw/theora/parameter_updates

This	is	a	standard	ROS	interface	for	a	modern	depth	camera	like	the	Microsoft	Kinect	or
Asus	Xtion	Pro.	The	first	three	topics	start	with	camera/depth	and,	indeed,	they	deal	with
the	calibration	data	and	depth-sensor	data.	We’ll	get	to	the	depth	data	later	in	this	chapter,
but	first,	let’s	deal	with	the	visual	images.	The	visual	images	streaming	from	the
Turtlebot’s	camera	appear	on	the	camera/rgb/image_raw	topic.	The	controller	we	will
write	is	intended	to	run	directly	on	the	Turtlebot,	so	we	should	subscribe	directly	to	the
image_raw	topic.	If	we	were	operating	over	a	bandwidth-limited	connection,	such	as	a
WiFi	link,	we	might	want	to	subscribe	to	the	image_raw/compressed	topic,	which	will	run
each	frame	through	an	image-compression	library	before	sending	it	over	the	wire.	The



theora	topic	applies	even	more	compression	by	creating	a	compressed	video	stream,
rather	than	compressing	the	images	one	at	a	time.	In	typical	camera	streams,	this	results	in
considerable	network	bandwidth	savings,	at	the	expense	of	compression	artifacts,
potentially	increased	processor	usage,	and	latency.	In	general,	compressed	video	streams
make	sense	when	the	goal	is	to	support	human	teleoperators;	however,	whenever	possible,
uncompressed	images	work	best	for	computer	vision	algorithms.

Now	that	we	know	that	the	image	data	is	available	on	the	camera/rgb/image_raw	topic,
we	can	write	a	minimal	rospy	node	that	will	subscribe	to	this	data,	as	shown	in
Example	12-1.

Example	12-1.	follower.py
#!/usr/bin/env	python

import	rospy

from	sensor_msgs.msg	import	Image

def	image_callback(msg):

		pass

rospy.init_node('follower')

image_sub	=	rospy.Subscriber('camera/rgb/image_raw',	Image,	image_callback)

rospy.spin()

This	program	is	the	minimal	code	required	to	subscribe	to	image	messages.	But	it	doesn’t
really	do	anything.	The	image	callback	doesn’t	do	anything	at	all:

def	image_callback(msg):

		pass

on	the	camera/rgb/image_raw	topic	—	however	—	the	program	does	at	least	subscribe	to
messages.	To	verify	this,	first	let’s	make	follower.py	an	executable:

user@hostname$	chmod	+x	follower.py

And	run	it:

user@hostname$	./follower.py

NOTE
Many	of	the	examples	in	the	book	change	the	permissions	of	a	Python	source	file	and	then	run	it	as	an
executable	on	the	command	line.	This	is	simply	a	matter	of	personal	preference.	It	is	equally	valid	to
explicitly	invoke	the	Python	interpreter	and	pass	the	Python	script	as	an	argument:

user@hostname$	python	follower.py

The	program	will	not	produce	any	output.	So,	how	can	we	know	if	it	really	subscribed	to
the	image	stream?	Let’s	leave	follower.py	running,	start	another	terminal,	and	interrogate
the	system:

user@hostname$	rosnode	list



This	will	print	a	list	of	all	currently	running	nodes.	All	but	one	of	them	are	started	by	the
Turtlebot	simulation	launch	file:

/bumper2pointcloud

/cmd_vel_mux

/depthimage_to_laserscan

/follower

/gazebo

/laserscan_nodelet_manager

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

We	can	see	that	our	follower	node	is	indeed	on	the	list	of	running	nodes.	Now,	we	can
ask	roscore	to	give	us	some	details	about	its	connections	by	typing	the	following:

user@hostname$	rosnode	info	follower

This	prints	lots	of	interesting	output:

Node	[/follower]

Publications:

	*	/rosout	[rosgraph_msgs/Log]

Subscriptions:

	*	/camera/rgb/image_raw	[sensor_msgs/Image]

	*	/clock	[rosgraph_msgs/Clock]

Services:

	*	/follower/set_logger_level

	*	/follower/get_loggers

contacting	node	http://qbox-home:59300/	...

Pid:	5896

Connections:

	*	topic:	/rosout

				*	to:	/rosout

				*	direction:	outbound

				*	transport:	TCPROS

	*	topic:	/clock

				*	to:	/gazebo	(http://qbox-home:37981/)

				*	direction:	inbound

				*	transport:	TCPROS

	*	topic:	/camera/rgb/image_raw

				*	to:	/gazebo	(http://qbox-home:37981/)

				*	direction:	inbound

				*	transport:	TCPROS

The	first	block	of	that	output	lists	the	publications,	subscriptions,	and	services	that	the
node	instantiated.	Most	were	autogenerated	by	rospy,	but	we	can	see	the
camera/rgb/image_raw	subscription	that	was	part	of	the	minimal	program	of	Example	12-
1.	The	second	section	is	often	more	interesting.	To	produce	that	section,	the	rosnode
command-line	program	contacted	the	follower.py	node	and	received	a	list	of	its	current
connections.	The	last	element	in	that	list	shows	that	the	/camera/rgb/image_raw
subscription	is	indeed	receiving	inbound	messages	from	the	/gazebo	node.	Often,	it	is
useful	to	understand	how	quickly	messages	are	arriving.	Fortunately,	a	simple	shell
command	can	estimate	this	for	us:



user@hostname$	rostopic	hz	/camera/rgb/image_raw

The	rostopic	hz	command	will	run	forever;	press	Ctrl-C	to	make	it	stop.	A	few	seconds
of	that	command	will	print	the	output	similar	to	the	following:

subscribed	to	[/camera/rgb/image_raw]

average	rate:	19.780

				min:	0.040s	max:	0.060s	std	dev:	0.00524s	window:	19

average	rate:	19.895

				min:	0.040s	max:	0.060s	std	dev:	0.00428s	window:	39

average	rate:	20.000

				min:	0.040s	max:	0.060s	std	dev:	0.00487s	window:	60

average	rate:	20.000

				min:	0.040s	max:	0.060s	std	dev:	0.00531s	window:	79

average	rate:	19.959

				min:	0.040s	max:	0.060s	std	dev:	0.00544s	window:	99

average	rate:	20.000

				min:	0.040s	max:	0.060s	std	dev:	0.00557s	window:	104

From	this	output,	we	can	gather	that	the	camera/rgb/image_raw	messages	are	arriving	at
20	frames	per	second.	Good!

Now	that	we	know	that	the	program	in	Example	12-1	is	indeed	receiving	images,	we	need
to	do	something	with	them!	There	are	many	different	ways	to	proceed,	but	one	of	the	most
popular	is	to	pass	the	images	to	the	OpenCV	library.	OpenCV	contains	efficient,	well-
tested	implementations	of	many	popular	computer	vision	algorithms.	To	pass	data
between	the	ROS	and	OpenCV	image	formats,	we	can	use	the	cv_bridge	package,	which
contains	functions	to	convert	between	ROS	sensor_msgs/Image	messages	and	the	objects
used	by	OpenCV.

Example	12-2	instantiates	a	CvBridge	object	and	uses	it	to	convert	the	incoming
sensor_msgs/Image	stream	to	OpenCV	messages	and	display	them	on	the	screen	using
the	OpenCV	imshow()	function.

Example	12-2.	follower_opencv.py
#!/usr/bin/env	python

import	rospy

from	sensor_msgs.msg	import	Image

import	cv2,	cv_bridge

class	Follower:

		def	__init__(self):

				self.bridge	=	cv_bridge.CvBridge()

				cv2.namedWindow("window",	1)

				self.image_sub	=	rospy.Subscriber('camera/rgb/image_raw',

																																						Image,	self.image_callback)

		def	image_callback(self,	msg):

				image	=	self.bridge.imgmsg_to_cv2(msg,desired_encoding='bgr8')

				cv2.imshow("window",	image)

				cv2.waitKey(3)

rospy.init_node('follower')

follower	=	Follower()

rospy.spin()

As	an	example,	the	Turtlebot	was	moved	and	rotated	within	the	default	simulation	world
so	that	it	was	oriented	facing	a	dumpster,	as	shown	in	Figure	12-1.



Figure	12-1.	A	Gazebo	perspective	of	a	Turtlebot	facing	a	dumpster

Meanwhile,	Gazebo	is	dutifully	generating	simulated	camera	images	and	streaming	them
to	our	program,	which	is	using	the	OpenCV	imshow()	and	waitKey()	functions	to	render
them	to	a	GUI	window	(see	Figure	12-2).



Figure	12-2.	A	dumpster,	from	the	TurtleBot’s	perspective

That’s	it!	We	are	now	streaming	simulated	camera	images	through	Gazebo,	ROS,	and
OpenCV!

Although	it’s	fun	to	look	at	dumpsters,	let’s	look	at	something	else.	Let’s	load	a	Gazebo
world	with	a	nice	bright	line	in	it:

user@hostname$	roslaunch	followbot	course.launch

That	Gazebo	world	file	will	start	a	Turtlebot	on	a	yellow	line	that	we	want	to	follow,	as
shown	in	Figure	12-3.	Why	would	we	want	to	follow	a	line?	Because	lines	are	often	used
to	mark	routes,	whether	inside	a	controlled	environment	like	a	warehouse	or	a	factory,	or
on	roadways.	Although	each	country	has	a	particular	scheme	of	colors	and	stripe	patterns,
broadly	speaking,	being	able	to	detect	and	follow	lines	is	one	of	the	(many)	skills	required
for	autonomous	driving.

In	the	next	section,	we	will	manipulate	the	images	coming	from	the	Turtlebot’s	camera	to
detect	the	center	of	the	line	in	the	camera	frames.



Figure	12-3.	A	Gazebo	screenshot	showing	a	Turtlebot	on	the	course	we	want	to	follow



Detecting	the	Line
In	this	section,	we	will	use	OpenCV	in	Python	to	process	the	images	coming	through	ROS
from	a	simulated	Turtlebot	in	the	world	shown	in	Figure	12-3.	The	goal	is	to	detect	the
location	of	the	target	line	in	the	Turtlebot’s	camera	and	follow	it	around	the	course.	A
typical	image	from	the	Turtlebot’s	camera	is	shown	in	Figure	12-4.

There	are	many	strategies	that	can	be	used	to	detect	and	follow	lines	in	various	situations.
Many	PhD	dissertations	have	been	granted	for	this	topic,	which	becomes	arbitrarily
complex	when	considering	the	variability	and	noise	associated	with,	for	example,	roadway
striping.	Fortunately,	in	our	case	we	are	just	going	to	consider	an	optimally	painted,
optimally	illuminated	bright	yellow	line.	Our	strategy	will	be	to	filter	a	block	of	rows	of
the	image	by	color	and	drive	the	robot	toward	the	center	of	the	pixels	that	pass	the	color
filter.	The	first	step,	then,	is	to	filter	the	image	by	color.	The	purpose	of	this	exercise	is	not
just	to	show	how	to	follow	lines,	but	to	demonstrate	how	to	subscribe	to	an	image	stream
in	ROS	and	push	it	though	the	OpenCV	library	in	Python.	This	general	pipeline	could	then
be	used	in	other	application	problems	by	tapping	into	the	wide	variety	of	excellent
computer	vision	algorithms	implemented	in	OpenCV.

Figure	12-4.	A	typical	view	from	the	Turtlebot’s	camera	when	following	a	line

The	task	at	hand	is	to	find	the	yellow	line	in	the	Turtlebot’s	image	stream.	The	most
obvious	approach	is	to	find	the	red,	green,	blue	(RGB)	value	of	a	yellow	image	pixel	and
filter	for	nearby	RGB	values.	Unfortunately,	filtering	on	RGB	values	turns	out	to	be	a



surprisingly	poor	way	to	find	a	particular	color	in	an	image,	since	the	raw	RGB	values	are
a	function	of	the	overall	brightness	as	well	as	the	color	of	the	object.	Slightly	different
lighting	conditions	would	result	in	the	filter	failing	to	perform	as	intended.	Instead,	a
better	technique	for	filtering	by	color	is	to	transform	RGB	images	into	hue,	saturation,
value	(HSV)	images.	The	HSV	image	separates	the	RGB	components	into	hue	(color),
saturation	(color	intensity),	and	value	(brightness).	Once	the	image	is	in	this	form,	we	can
then	apply	a	threshold	for	hues	near	yellow	to	obtain	a	binary	image	in	which	pixels	are
either	true	(meaning	they	pass	the	filter)	or	false	(they	do	not	pass	the	filter).	The
following	code	snippets	and	examples	images	will	illustrate	this	process.

In	Example	12-3,	we	implement	this	using	OpenCV,	which	makes	this	task	quite	easy	in
Python.

Example	12-3.	follower_color_filter.py
#!/usr/bin/env	python

import	rospy,	cv2,	cv_bridge,	numpy

from	sensor_msgs.msg	import	Image

class	Follower:

		def	__init__(self):

				self.bridge	=	cv_bridge.CvBridge()

				cv2.namedWindow("window",	1)

				self.image_sub	=	rospy.Subscriber('camera/rgb/image_raw',

																																						Image,	self.image_callback)

		def	image_callback(self,	msg):

				image	=	self.bridge.imgmsg_to_cv2(msg)

				hsv	=	cv2.cvtColor(image,	cv2.COLOR_BGR2HSV)

				lower_yellow	=	numpy.array([	50,		50,	170])

				upper_yellow	=	numpy.array([255,	255,	190])

				mask	=	cv2.inRange(hsv,	lower_yellow,	upper_yellow)

				masked	=	cv2.bitwise_and(image,	image,	mask=mask)

				cv2.imshow("window",	mask	)

				cv2.waitKey(3)

rospy.init_node('follower')

follower	=	Follower()

rospy.spin()

As	before,	the	CvBridge	module	converts	ROS	sensor_msgs/Image	messages	into	the
OpenCV	image	format:

				image	=	self.bridge.imgmsg_to_cv2(msg)

We	can	then	pass	the	OpenCV	image	to	the	cvtColor()	function	to	convert	between	the
RGB	representation	and	its	equivalent	representation	in	the	HSV	space:

				hsv	=	cv2.cvtColor(image,	cv2.COLOR_BGR2HSV)

The	cvtColor()	function	will	produce	the	HSV	image	shown	in	Figure	12-5	when
presented	with	the	RGB	image	shown	previously	in	Figure	12-4.

Then,	in	the	HSV	space,	we	can	create	lower	and	upper	bounds	for	the	desired	hues	using
numpy	and	then	pass	those	bounds	to	OpenCV’s	inRange()	function	to	produce	a	binary
image:

				lower_yellow	=	numpy.array([	50,		50,	170])



				upper_yellow	=	numpy.array([255,	255,	190])

				mask	=	cv2.inRange(hsv,	lower_yellow,	upper_yellow)

The	resulting	binary	image	is	shown	in	Figure	12-6.

Figure	12-5.	The	HSV	representation	of	a	Turtlebot	camera	image	when	following	a	line



Figure	12-6.	The	binary	image	obtained	by	a	hue	filter	on	the	HSV	image

Obtaining	a	binary	image	of	the	line	is	a	key	first	step	in	the	image-processing	pipeline.
However,	our	goal	is	to	follow	the	line,	not	just	to	take	interesting	pictures	of	it!	To	follow
the	line,	we	will	use	a	simple	strategy:	we	will	only	look	at	a	20-row	portion	of	the	image,
starting	three-quarters	of	the	way	down	the	image.	The	rationale	behind	this	approach	is
that,	from	a	controls	perspective,	we	are	really	only	concerned	with	the	portion	of	the	line
that	is	immediately	in	front	of	the	robot.	With	this	strategy,	what	happens	to	the	line	five
meters	in	front	of	the	robot	is	irrelevant;	our	controller	will	only	be	concerned	with	what	is
in	the	field	of	view	of	the	camera	approximately	one	meter	in	front	of	the	robot.	To	debug
our	implementation,	we	will	first	write	a	program,	shown	in	Example	12-4,	that
implements	this	image	processing	strategy	and	draws	a	dot	where	it	thinks	the	center	of
the	line	is	within	the	portion	of	the	image	corresponding	to	roughly	one	meter	in	front	of
the	robot.

Example	12-4.	follower_line_finder.py
#!/usr/bin/env	python

import	rospy,	cv2,	cv_bridge,	numpy

from	sensor_msgs.msg	import	Image

class	Follower:

		def	__init__(self):

				self.bridge	=	cv_bridge.CvBridge()

				cv2.namedWindow("window",	1)

				self.image_sub	=	rospy.Subscriber('camera/rgb/image_raw',

																																						Image,	self.image_callback)

				self.twist	=	Twist()

		def	image_callback(self,	msg):



				image	=	self.bridge.imgmsg_to_cv2(msg,desired_encoding='bgr8')

				hsv	=	cv2.cvtColor(image,	cv2.COLOR_BGR2HSV)

				lower_yellow	=	numpy.array([	10,		10,		10])

				upper_yellow	=	numpy.array([255,	255,	250])

				mask	=	cv2.inRange(hsv,	lower_yellow,	upper_yellow)

				h,	w,	d	=	image.shape

				search_top	=	3*h/4

				search_bot	=	search_top	+	20

				mask[0:search_top,	0:w]	=	0

				mask[search_bot:h,	0:w]	=	0

				M	=	cv2.moments(mask)

				if	M['m00']	>	0:

						cx	=	int(M['m10']/M['m00'])

						cy	=	int(M['m01']/M['m00'])

						cv2.circle(image,	(cx,	cy),	20,	(0,0,255),	-1)

				cv2.imshow("window",	image)

				cv2.waitKey(3)

rospy.init_node('follower')

follower	=	Follower()

rospy.spin()

To	restrict	our	search	to	the	20-row	portion	of	the	image	corresponding	to	the	one-meter
distance	in	front	of	the	Turtlebot,	we	will	use	the	OpenCV	and	numpy	libraries	to	zero	out
(i.e.,	erase	any	filter	hits	of)	pixels	outside	the	desired	region.	This	code	snippet	uses	the
Python	slice	notation	to	express	pixel	regions	in	a	compact	syntax:

				h,	w,	d	=	image.shape

				search_top	=	3*h/4

				search_bot	=	search_top	+	20

				mask[0:search_top,	0:w]	=	0

				mask[search_bot:h,	0:w]	=	0

Then,	we	will	use	the	OpenCV	moments()	function	to	calculate	the	centroid,	or	arithmetic
center,	of	the	blob	of	the	binary	image	that	passes	our	filter:

				M	=	cv2.moments(mask)

				if	M['m00']	>	0:

						cx	=	int(M['m10']/M['m00'])

						cy	=	int(M['m01']/M['m00'])

Finally,	to	help	in	debugging,	it	is	often	useful	to	draw	calculations	and	estimates	on	top	of
the	original	camera	image.	In	Example	12-4	we	draw	a	solid	red	circle	on	the	original
RGB	image	to	indicate	the	algorithm’s	estimate	of	the	center	of	the	line	in	the	target	image
portion:

						cv2.circle(image,	(cx,	cy),	20,	(0,0,255),	-1)

This	will	produce	output	similar	to	Figure	12-7.

It	is	important	to	note	that	Example	12-4	is	written	to	handle	not	just	still	images,	but
continual	image	streams.	To	better	understand	the	strengths	and	weaknesses,	leave
follower_line_finder.py	up	and	running,	and	use	the	Move	and	Rotate	tools	in	Gazebo
to	observe	the	behavior	of	follower_line_finder.py	as	the	position	and	bearing	change
in	simulation.	Next,	we	will	use	the	line-centroid	estimation	as	our	control	input.



Figure	12-7.	The	original	image	with	the	red	circle	overlay,	which	shows	the	algorithm’s	estimate	of	the	center	of	the
line



Following	the	Line
In	the	previous	section,	we	worked	up	to	a	line	detection	algorithm.	Now	that	we	have	a
line	detection	scheme	up	and	running,	we	can	move	on	to	the	task	of	driving	the	robot
such	that	the	line	stays	near	the	center	of	the	camera	frame.	In	Example	12-5,	we
demonstrate	one	approach	to	this	problem:	a	P-controller.	The	P	in	this	controller’s	name
stands	for	proportional	and	simply	means	that	a	linear	scaling	of	an	error	drives	the
control	output.	In	our	case,	the	error	signal	is	the	distance	between	the	centerline	of	the
image	and	the	center	of	the	line	we	are	trying	to	follow.

Example	12-5.	follower_p.py
#!/usr/bin/env	python

import	rospy,	cv2,	cv_bridge,	numpy

from	sensor_msgs.msg	import	Image

from	geometry_msgs.msg	import	Twist

class	Follower:

		def	__init__(self):

				self.bridge	=	cv_bridge.CvBridge()

				cv2.namedWindow("window",	1)

				self.image_sub	=	rospy.Subscriber('camera/rgb/image_raw',

																																						Image,	self.image_callback)

				self.cmd_vel_pub	=	rospy.Publisher('cmd_vel_mux/input/teleop',

																																							Twist,	queue_size=1)

				self.twist	=	Twist()

		def	image_callback(self,	msg):

				image	=	self.bridge.imgmsg_to_cv2(msg,desired_encoding='bgr8')

				hsv	=	cv2.cvtColor(image,	cv2.COLOR_BGR2HSV)

				lower_yellow	=	numpy.array([	10,		10,		10])

				upper_yellow	=	numpy.array([255,	255,	250])

				mask	=	cv2.inRange(hsv,	lower_yellow,	upper_yellow)

				h,	w,	d	=	image.shape

				search_top	=	3*h/4

				search_bot	=	3*h/4	+	20

				mask[0:search_top,	0:w]	=	0

				mask[search_bot:h,	0:w]	=	0

				M	=	cv2.moments(mask)

				if	M['m00']	>	0:

						cx	=	int(M['m10']/M['m00'])

						cy	=	int(M['m01']/M['m00'])

						cv2.circle(image,	(cx,	cy),	20,	(0,0,255),	-1)

						err	=	cx	-	w/2

						self.twist.linear.x	=	0.2

						self.twist.angular.z	=	-float(err)	/	100

						self.cmd_vel_pub.publish(self.twist)

				cv2.imshow("window",	image)

				cv2.waitKey(3)

rospy.init_node('follower')

follower	=	Follower()

rospy.spin()

The	P-controller	is	implemented	in	the	following	four	lines:

						err	=	cx	-	w/2

						self.twist.linear.x	=	0.2

						self.twist.angular.z	=	-float(err)	/	100

						self.cmd_vel_pub.publish(self.twist)

The	first	line	calculates	the	error	signal:	the	distance	between	the	center	column	of	the
image	and	the	estimated	center	of	the	line.	The	following	two	lines	calculate	the	values	to
be	used	for	the	Turtlebot’s	cmd_vel	stream	and	scale	it	to	something	physically	achievable



by	a	Turtlebot.	Finally,	the	last	line	publishes	the	sensor_msgs/Twist	message	to	its	peer
nodes	(in	this	case,	is	simply	the	Turtlebot	base).

Although	the	code	is	surprisingly	short,	this	system	is	actually	doing	some	reasonable
behavior	and	is	able	to	follow	lines	in	Gazebo.



Summary
In	this	chapter,	we	showed	how	to	use	OpenCV	with	ROS	in	Python.	Specifically,	we
showed	how	to	filter	and	threshold	a	ROS	image	stream	by	hue,	and	how	to	generate	an
error	signal	and	drive	a	minimalist	feedback	controller.	The	result	is	a	program	that	will
drive	a	simulated	Turtlebot	to	follow	lines	around	a	Gazebo	simulation.

Even	though	line	following	has	many	useful	applications,	such	as	following	road	signage
or	factory	floor	markings,	it	is	often	not	quite	enough	by	itself.	A	common	requirement	for
higher-level	robot	navigation	is	to	travel	between	specific	points	on	a	map.	In	the	next
chapter,	we	will	describe	an	approach	to	this	problem	using	the	ROS	navigation	stack	and
tools	for	creating	and	managing	state	machines.





Chapter	13.	On	Patrol

In	Chapter	10,	you	saw	how	to	use	the	ROS	nav	stack	to	get	your	robot	to	a	specific	place
in	the	world.	In	this	chapter,	we’ll	build	on	these	basic	navigation	capabilities	and	look	at
how	to	get	your	robot	to	patrol	around	the	world,	collecting	interesting	information	as	it
goes.	We’ll	also	use	this	application	as	an	excuse	to	learn	about	task-level	control	of
robots,	where	we	sequence	entire	behaviors	rather	than	single	actions.



Simple	Patrolling
As	with	most	things	in	ROS,	there	are	several	ways	to	implement	a	patrol	system.	In	fact,
the	code	we	saw	in	Example	10-1	is	all	we	need.	This	code,	shown	again	in	Example	13-1,
moves	the	robot	from	one	pose	in	the	world	to	another.	All	we	need	to	do	is	to	put	the
places	in	the	world	that	we	want	the	patrol	to	cover	in	the	list	of	waypoints,	and	we’re	all
set.

Example	13-1.	patrol.py
#!/usr/bin/env	python

import	rospy

import	actionlib

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

waypoints	=	[		

				[(2.1,	2.2,	0.0),	(0.0,	0.0,	0.0,	1.0)],

				[(6.5,	4.43,	0.0),	(0.0,	0.0,	-0.984047240305,	0.177907360295)]

]

def	goal_pose(pose):		

				goal_pose	=	MoveBaseGoal()

				goal_pose.target_pose.header.frame_id	=	'map'

				goal_pose.target_pose.pose.position.x	=	pose[0][0]

				goal_pose.target_pose.pose.position.y	=	pose[0][1]

				goal_pose.target_pose.pose.position.z	=	pose[0][2]

				goal_pose.target_pose.pose.orientation.x	=	pose[1][0]

				goal_pose.target_pose.pose.orientation.y	=	pose[1][1]

				goal_pose.target_pose.pose.orientation.z	=	pose[1][2]

				goal_pose.target_pose.pose.orientation.w	=	pose[1][3]

				return	goal_pose

if	__name__	==	'__main__':

				rospy.init_node('patrol')

				client	=	actionlib.SimpleActionClient('move_base',	MoveBaseAction)		

				client.wait_for_server()

				while	True:

								for	pose	in	waypoints:			

												goal	=	goal_pose(pose)

												client.send_goal(goal)

												client.wait_for_result()

A	list	of	the	waypoints	for	the	robot	to	patrol.

A	helper	function	to	turn	a	waypoint	into	a	MoveBaseGoal.

Create	a	simple	action	client,	and	wait	for	the	server	to	be	ready.

Loop	through	the	waypoints,	sending	each	as	an	action	goal.

If	all	we	wanted	to	do	was	to	implement	a	simple	patrol	system,	then	this	code	would
probably	be	just	fine.	It	does	everything	that	we	need	to	move	the	robot	from	one
waypoint	to	the	next	by	making	repeated	action	calls	to	the	nav	stack.	However,	if	we	also



want	the	robot	to	do	something	else	while	it’s	navigating	or	when	it	reaches	a	waypoint,
we	have	to	write	code	that	synchronizes	with	the	navigation	behavior.	To	make	this	easier
to	implement	and	debug,	it	makes	sense	to	encapsulate	it	in	some	way.	In	the	next	section,
we’re	going	to	see	one	way	of	doing	this	encapsulating,	using	the	idea	of	state	machines
and	the	smach	task-level	coordination	library.



State	Machines
The	idea	of	a	state	machine	is	a	fundamental	one	in	computer	science.	The	basic	idea	is
that	your	robot	can	be	in	one	of	a	finite	number	of	states,	such	as	“waiting,”	“moving,”
and	“recharging,”	each	of	which	maps	to	a	behavior.	When	one	state	ends,	the	system
immediately	moves	into	another	state	(for	example,	changing	from	“waiting”	to	“moving”
as	the	robot	starts	to	navigate	around	the	world).	The	robot	must	always	be	in	one	and
only	one	of	these	states,	and	there	must	be	a	finite	number	of	them.	Which	state	the	robot
transitions	to	can	depend	on	the	outcome	of	the	just-finished	state.	For	example,	if	the
robot	just	moved	to	its	charging	station,	it	might	transition	from	“moving”	to	“charging,”
rather	than	to	“waiting.”	Once	it	is	charged,	then	it	might	transition	from	“charging”	to
“waiting.”	The	behaviors	that	correspond	to	the	states	“waiting,”	“moving,”	and
“charging”	can	be	encapsulated	in	the	states,	and	the	transitions	between	them	are
specified	by	the	structure	of	the	state	machine.

While	this	sounds	pretty	simple,	state	machines	can	be	used	to	control	quite	complex
behaviors.	Figure	13-1	shows	the	state	machine	for	the	plugging-in	behavior	of	the	PR2
robot.	The	robot	can	drive	up	to	a	socket,	pick	up	its	own	charging	cable,	and	plug	it	into
the	outlet	autonomously.	Obviously,	there	are	many	things	that	can	go	wrong;	a	state
machine	is	a	good	tool	to	understand	the	task-level	behavior	of	a	system	like	this	and	to
make	sure	that	we	have	all	of	our	bases	covered.

Each	ellipse	or	box	in	Figure	13-1	is	a	state,	and	the	arrows	are	the	transitions	between
them,	labeled	by	the	conditions	under	which	they	are	followed.	The	boxes	with	a	gray
background	are	state	machines	in	their	own	right	(we’ll	discuss	this	shortly,	but	you	can
just	think	of	them	as	states	for	now),	while	the	boxes	at	the	very	bottom	(preempted,
aborted,	plugged_in,	and	unplugged)	are	the	outcomes	of	the	whole	state	machine.
When	the	DETECT_OUTLET	state	ends,	for	example,	it	reports	that	it	succeeded,	aborted,	or
was	preempted.	If	it	succeeded,	then	the	system	transitions	to	the	FETCH_PLUG	state.	If	it
aborted,	the	next	state	is	FAIL_STILL_UNPLUGGED.	If	it	was	preempted	(i.e.,	something
interrupted	it	unexpectedly),	the	whole	system	returns	preempted.

Notice	that	some	states	have	a	single	transition	condition	(such	as	FAIL_​STILL_​
UNPLUGGED),	while	others	have	several.	Typically,	this	will	mean	that	the	states	with	a
single	transition	condition	cannot	fail	and	only	do	one	thing.



Figure	13-1.	State	machine	for	the	PR2	robot	to	plug	into	an	electrical	outlet,	generated	by	the	smach_viewer	node

The	states	have	meaningful	names,	such	as	DETECT_OUTLET	and	PLUG_IN,	and	so	do	the
transition	conditions	(succeeded,	aborted,	etc.).	The	convention	in	ROS	is	to	name	states
with	ALL_CAPS	and	transition	conditions	with	all	lowercase.	Let’s	look	at	how	we	can
specify	state	machines	like	this	in	ROS.



State	Machines	in	ROS
State	machines	in	ROS	are	built	using	the	smach	package	and	its	ROS-specific	extensions
in	smach_ros.	smach	contains	a	lot	more	than	just	state	machines,	but	that’s	the	part	we’re
going	to	focus	on	for	now.	You	should	think	about	using	smach	when	you	have	a	complex
robot	behavior	that	you	can	break	up	into	a	set	of	subbehaviors	that	happen	in	a	fixed
structure.	Basically,	if	you	can	draw	the	behavior	of	your	system	using	a	diagram	like
Figure	13-1,	then	it’s	probably	a	good	candidate	for	smach.	However,	if	you	need	blazing-
fast	state	transitions	to	control	a	low-level	aspect	of	your	robot,	then	smach	is	not	a	good
choice,	mostly	because	it	was	written	in	Python.	There	is	very	little	overhead	in	smach,
though	and	it’s	likely	to	be	a	good	choice	for	most	of	the	state	machines	you	write.

So,	now	that	we	know	what	a	state	machine	is,	and	what	it’s	good	for,	let’s	look	at	how	we
define	a	simple	state	machine	with	smach.



Defining	State	Machines	with	smach
State	machines	in	smach	are	defined	procedurally,	using	Python	code,	rather	than	through
some	sort	of	definition	file.	This	allows	for	a	lot	of	flexibility	in	the	way	that	state
machines	are	put	together,	as	we’ll	see	later	in	this	chapter.	First,	though,	we’re	going	to
look	at	a	toy	example	of	a	very	simple	state	machine,	to	get	you	used	to	some	of	the	basic
concepts	used	by	smach.

Example	13-2	shows	the	code	to	define	and	run	a	very	simple	two-state	state	machine	in
smach.	State	ONE	prints	the	word	“one”	and	then	transitions	to	state	TWO.	State	TWO	prints
“two”	and	transitions	to	state	ONE.	Not	very	exciting,	we	admit,	but	it’s	got	all	of	the	pieces
that	we	want	to	show	you.

Example	13-2.	simple_fsm.py
#!/usr/bin/env	python

import	rospy

from	smach	import	State,StateMachine

from	time	import	sleep

class	One(State):

				def	__init__(self):

								State.__init__(self,	outcomes=['success'])

				def	execute(self,	userdata):

								print	'one'

								sleep(1)

								return	'success'

class	Two(State):

				def	__init__(self):

								State.__init__(self,	outcomes=['success'])

				def	execute(self,	userdata):

								print	'two'

								sleep(1)

								return	'success'

if	__name__	==	'__main__':

				sm	=	StateMachine(outcomes=['success'])

				with	sm:

								StateMachine.add('ONE',	One(),	transitions={'success':'TWO'})

								StateMachine.add('TWO',	Two(),	transitions={'success':'ONE'})

				sm.execute()

The	first	thing	that	we	need	to	do	is	to	import	the	stuff	we’ll	need	from	smach.	In	this
simple	example,	we’re	going	to	use	the	classes	State	and	StateMachine:

from	smach	import	State,StateMachine

In	addition	to	this,	you’re	going	to	need	to	add	smach	as	a	dependency	in	your
package.xml	file,	to	make	sure	ROS	knows	where	to	find	things.

Next,	we	define	some	states	for	our	state	machine.	States	in	smach	are	instances	of	Python
classes	that	inherit	from	the	State	class:



class	One(State):

				def	__init__(self):

								State.__init__(self,	outcomes=['success'])

				def	execute(self,	userdata):

								print	'one'

								sleep(1)

								return	'success'

This	code	defines	a	state	class	for	our	state	machine.	It	inherits	from	the	smach	State
class.	In	our	class	constructor,	we	explicitly	call	the	parent	class	constructor,	passing	in	a
list	of	all	the	possible	outcomes	from	our	state.	Outcomes	are	the	labels	on	the	arrows	in
Figure	13-1	and	are	simple	strings	in	our	code.	They	should	mean	something	in	the
context	of	the	behavior	that	the	state	implements.	In	this	case,	there	is	only	a	single
outcome,	success.

Each	state	also	needs	to	implement	an	execute(self,	userdata)	function,	which	is
where	all	the	work	of	the	state	happens.	When	the	state	machine	transitions	to	a	particular
state,	that	state’s	execute()	function	is	called.	The	function	takes	a	userdata	argument,
which	we’re	going	to	ignore	for	now,	that	allows	data	to	be	passed	in	on	the	fly	from	the
previous	state.	The	function	must	return	one	of	the	outcomes	listed	in	the	base	class
constructor	call.	Since	we	only	have	one	outcome,	success,	that’s	what	we	return.

After	defining	another	(very	similar)	state	class,	it’s	time	to	actually	construct	the	state
machine	itself:

				sm	=	StateMachine(outcomes=['success'])

				with	sm:

								StateMachine.add('ONE',	One(),	transitions={'success':'TWO'})

								StateMachine.add('TWO',	Two(),	transitions={'success':'ONE'})

				sm.execute()

We	start	by	creating	an	instance	of	a	StateMachine	called	sm,	passing	it	a	list	of	possible
outcomes.	These	are	different	from	the	lists	of	outcomes	of	the	states	we’re	going	to	build
our	state	machine	out	of,	although	they	could	have	the	same	names.	Since	smach	allows
for	hierarchical	state	machines,	we	can	use	sm	as	the	state	in	another	state	machine.	This	is
what	happened	in	the	gray	boxes	in	Figure	13-1.

Once	we	have	our	(empty)	state	machine,	we	can	open	it	with	a	with	statement,	and	start
to	populate	it	with	states.	Each	state	is	added	with	the	add()	function	and	has	a	name,	an
instance	of	the	state,	and	a	dictionary	of	transitions.	The	first	call	to	add()	adds	a	state
called	ONE,	with	an	instance	of	the	class	One.	On	an	outcome	of	success,	it	transitions	to	a
state	called	TWO.	Similarly,	TWO	is	implemented	with	an	instance	of	Two	and	transitions
back	to	ONE	on	an	outcome	of	success.

What	this	simple	state	machine	does,	then,	is	just	repeatedly	print	“one”	and	“two”	to	the
screen.	Let’s	test	it	to	make	sure	that	it’s	doing	the	right	thing.	When	we	run	the	code,	the
sm.execute()	call	is	what	starts	things	rolling:



user@hostname$	rosrun	patrol	simple_fsm.py

[	DEBUG	]	:	Adding	state	(ONE,	<__main__.One	object	at	0x7fa64a818190>,	\

		{'success':	'TWO'})

[	DEBUG	]	:	Adding	state	'ONE'	to	the	state	machine.

[	DEBUG	]	:	State	'ONE'	is	missing	transitions:	{}

[	DEBUG	]	:	TRANSITIONS	FOR	ONE:	{'success':	'TWO'}

[	DEBUG	]	:	Adding	state	(TWO,	<__main__.Two	object	at	0x7fa64a818210>,	\

		{'success':	'ONE'})

[	DEBUG	]	:	Adding	state	'TWO'	to	the	state	machine.

[	DEBUG	]	:	State	'TWO'	is	missing	transitions:	{}

[	DEBUG	]	:	TRANSITIONS	FOR	TWO:	{'success':	'ONE'}

[		INFO	]	:	State	machine	starting	in	initial	state	'ONE'	with	userdata:

	 []

one

[		INFO	]	:	State	machine	transitioning	'ONE':'success'-->'TWO'

two

[		INFO	]	:	State	machine	transitioning	'TWO':'success'-->'ONE'

one

[		INFO	]	:	State	machine	transitioning	'ONE':'success'-->'TWO'

two

[		INFO	]	:	State	machine	transitioning	'TWO':'success'-->'ONE'

one

[		INFO	]	:	State	machine	transitioning	'ONE':'success'-->'TWO'

two

[		INFO	]	:	State	machine	transitioning	'TWO':'success'-->'ONE'

one

[		INFO	]	:	State	machine	transitioning	'ONE':'success'-->'TWO'

two

[		INFO	]	:	State	machine	transitioning	'TWO':'success'-->'ONE'

one

smach	provides	a	lot	of	debugging	information	using	the	logging	system.	If	you	look	at	the
DEBUG-level	messages,	you	can	see	that	we’ve	successfully	added	two	states	and	the
correct	transitions.	smach	does	a	static	check	on	the	state	machine	once	it	is	assembled,	to
make	sure	that	everything	is	wired	up	legally	and	that	all	outcomes	are	connected	to	states.
The	state	machine	then	starts	to	run,	and	we	can	see	the	output	(“one”	and	“two”)
interspersed	with	informational	messages	about	the	state	transitions.

Congratulations!	You’ve	run	your	first	smach	state	machine.	Now,	let’s	look	at	something
slightly	more	relevant	to	moving	a	robot	around	the	world.



A	Slightly	More	Relevant	Example
Example	13-3	shows	a	more	advanced	use	of	smach.	The	idea	here	is	that	we	have	two
things	that	our	robot	can	do:	drive	in	a	straight	line	and	turn	in	place.	We’re	going	to
implement	each	of	these	behaviors	in	a	separate	smach	state	and	then	connect	them
together	to	get	the	robot	to	drive	along	polygonal	paths.

Example	13-3.	shapes.py
#!/usr/bin/env	python

import	rospy

from	smach	import	State,StateMachine

from	time	import	sleep

class	Drive(State):

				def	__init__(self,	distance):

								State.__init__(self,	outcomes=['success'])

								self.distance	=	distance

				def	execute(self,	userdata):

								print	'Driving',	self.distance

								sleep(1)

								return	'success'

class	Turn(State):

				def	__init__(self,	angle):

								State.__init__(self,	outcomes=['success'])

								self.angle	=	angle

				def	execute(self,	userdata):

								print	'Turning',	self.angle

								sleep(1)

								return	'success'

if	__name__	==	'__main__':

				triangle	=	StateMachine(outcomes=['success'])

				with	triangle:

								StateMachine.add('SIDE1',	Drive(1),	transitions={'success':'TURN1'})

								StateMachine.add('TURN1',	Turn(120),	transitions={'success':'SIDE2'})

								StateMachine.add('SIDE2',	Drive(1),	transitions={'success':'TURN2'})

								StateMachine.add('TURN2',	Turn(120),	transitions={'success':'SIDE3'})

								StateMachine.add('SIDE3',	Drive(1),	transitions={'success':'success'})

				square	=	StateMachine(outcomes=['success'])

				with	square:

								StateMachine.add('SIDE1',	Drive(1),	transitions={'success':'TURN1'})

								StateMachine.add('TURN1',	Turn(90),	transitions={'success':'SIDE2'})

								StateMachine.add('SIDE2',	Drive(1),	transitions={'success':'TURN2'})

								StateMachine.add('TURN2',	Turn(90),	transitions={'success':'SIDE3'})

								StateMachine.add('SIDE3',	Drive(1),	transitions={'success':'TURN3'})

								StateMachine.add('TURN3',	Turn(90),	transitions={'success':'SIDE4'})

								StateMachine.add('SIDE4',	Drive(1),	transitions={'success':'success'})

				shapes	=	StateMachine(outcomes=['success'])

				with	shapes:

								StateMachine.add('TRIANGLE',	triangle,	transitions={'success':'SQUARE'})

								StateMachine.add('SQUARE',	square,	transitions={'success':'success'})

				shapes.execute()

We	start	as	before,	by	including	the	bits	of	smach	we	need	and	defining	our	states.	For	this
example,	we	have	two	classes	corresponding	to	states,	Drive	and	Turn.	The	constructors
for	these	classes	each	take	a	single	argument	corresponding	to	the	distance	to	drive	(in
meters)	and	the	angle	to	turn	through	(in	degrees),	respectively.	Both	only	have	a	single



outcome,	success.	If	this	code	actually	controlled	a	real	robot,	the	execute()	function
would	have	code	in	it	to	move	the	robot	(and	probably	to	verify	that	things	had	gone	as
expected).

Things	get	a	bit	more	interesting	when	we	start	to	define	the	state	machines.	We	can
define	a	triangular	path	by	driving,	turning,	driving,	turning,	and	driving	again.	This	is
similar	to	the	original	example:

				triangle	=	StateMachine(outcomes=['success'])

				with	triangle:

								StateMachine.add('SIDE1',	Drive(1),	transitions={'success':'TURN1'})

								StateMachine.add('TURN1',	Turn(120),	transitions={'success':'SIDE2'})

								StateMachine.add('SIDE2',	Drive(1),	transitions={'success':'TURN2'})

								StateMachine.add('TURN2',	Turn(120),	transitions={'success':'SIDE3'})

								StateMachine.add('SIDE3',	Drive(1),	transitions={'success':'success'})

In	the	code,	we	also	define	a	state	machine	that	drives	the	robot	in	a	square.	Then,	we	can
chain	these	two	state	machines	together.

				shapes	=	StateMachine(outcomes=['success'])

				with	shapes:

								StateMachine.add('TRIANGLE',	triangle,	transitions={'success':'SQUARE'})

								StateMachine.add('SQUARE',	square,	transitions={'success':'success'})

				shapes.execute()

The	third	state	machine,	shapes,	will	first	run	the	triangle	state	machine,	and	then	the
square	one.	This	is	an	example	of	how	we	can	build	hierarchical	state	machines	with
smach.	Notice	that	the	states	have	the	same	names	in	both	triangle	and	square.	This	is
fine,	since	the	states	are	owned	by	different	machines,	and	there’s	no	ambiguity.

We	can	run	this	code	to	verify	that	it	works	as	expected:

user@hostname$	rosrun	patrol	shapes.py

...

[		INFO	]	:	State	machine	starting	in	initial	state	'TRIANGLE'	with	userdata:

	 []

[		INFO	]	:	State	machine	starting	in	initial	state	'SIDE1'	with	userdata:

	 []

Driving	1

[		INFO	]	:	State	machine	transitioning	'SIDE1':'success'-->'TURN1'

Turning	120

[		INFO	]	:	State	machine	transitioning	'TURN1':'success'-->'SIDE2'

Driving	1

[		INFO	]	:	State	machine	transitioning	'SIDE2':'success'-->'TURN2'

Turning	120

[		INFO	]	:	State	machine	transitioning	'TURN2':'success'-->'SIDE3'

Driving	1

[		INFO	]	:	State	machine	terminating	'SIDE3':'success':'success'

[		INFO	]	:	State	machine	transitioning	'TRIANGLE':'success'-->'SQUARE'

[		INFO	]	:	State	machine	starting	in	initial	state	'SIDE1'	with	userdata:

	 []

Driving	1

[		INFO	]	:	State	machine	transitioning	'SIDE1':'success'-->'TURN1'

Turning	90

[		INFO	]	:	State	machine	transitioning	'TURN1':'success'-->'SIDE2'

Driving	1

[		INFO	]	:	State	machine	transitioning	'SIDE2':'success'-->'TURN2'

Turning	90

[		INFO	]	:	State	machine	transitioning	'TURN2':'success'-->'SIDE3'



Driving	1

[		INFO	]	:	State	machine	transitioning	'SIDE3':'success'-->'TURN3'

Turning	90

[		INFO	]	:	State	machine	transitioning	'TURN3':'success'-->'SIDE4'

Driving	1

[		INFO	]	:	State	machine	terminating	'SIDE4':'success':'success'

[		INFO	]	:	State	machine	terminating	'SQUARE':'success':'success'

Note	that	the	state	machine	construction	messages	have	been	removed	to	save	space.



Defining	State	Machines	Procedurally
While	the	previous	example	worked	as	expected,	the	way	in	which	we	constructed	the
state	machines	was	a	bit	clunky,	listing	each	move	in	the	polygon	explicitly.	Since	we’re
defining	the	state	machines	procedurally,	we	can	do	better,	as	you	can	see	in	Example	13-
4.

Example	13-4.	shapes2.py
#!/usr/bin/env	python

import	rospy

from	smach	import	State,StateMachine

from	time	import	sleep

class	Drive(State):

				def	__init__(self,	distance):

								State.__init__(self,	outcomes=['success'])

								self.distance	=	distance

				def	execute(self,	userdata):

								print	'Driving',	self.distance

								sleep(1)

								return	'success'

class	Turn(State):

				def	__init__(self,	angle):

								State.__init__(self,	outcomes=['success'])

								self.angle	=	angle

				def	execute(self,	userdata):

								print	'Turning',	self.angle

								sleep(1)

								return	'success'

def	polygon(sides):

				polygon	=	StateMachine(outcomes=['success'])

				with	polygon:

								#	Add	all	but	the	final	side

								for	i	in	xrange(sides	-	1):

												StateMachine.add('SIDE_{0}'.format(i	+	1),

																													Drive(1),

																													transitions={'success':'TURN_{0}'.format(i	+	1)})

								#	Add	all	the	turns

								for	i	in	xrange(sides	-	1):

												StateMachine.add('TURN_{0}'.format(i	+	1),

																													Turn(360.0	/	sides),

																													transitions={'success':'SIDE_{0}'.format(i	+	2)})

								#	Add	the	final	side

								StateMachine.add('SIDE_{0}'.format(sides),

																									Drive(1),

																									transitions={'success':'success'})

				return	polygon

if	__name__	==	'__main__':

				triangle	=	polygon(3)

				square	=	polygon(4)

				shapes	=	StateMachine(outcomes=['success'])

				with	shapes:

								StateMachine.add('TRIANGLE',	triangle,	transitions={'success':'SQUARE'})

								StateMachine.add('SQUARE',	square,	transitions={'success':'success'})

				shapes.execute()

The	main	improvement	here	is	that	we	define	a	function	that,	given	the	number	of	sides	in



a	polygon,	will	define	a	state	machine	to	draw	it:

def	polygon(sides):

				polygon	=	StateMachine(outcomes=['success'])

				with	polygon:

								#	Add	all	but	the	final	side

								for	i	in	xrange(sides	-	1):

												StateMachine.add('SIDE_{0}'.format(i	+	1),

																													Drive(1),

																													transitions={'success':'TURN_{0}'.format(i	+	1)})

								#	Add	all	the	turns

								for	i	in	xrange(sides	-	1):

												StateMachine.add('TURN_{0}'.format(i	+	1),

																													Turn(360.0	/	sides),

																													transitions={'success':'SIDE_{0}'.format(i	+	2)})

								#	Add	the	final	side

								StateMachine.add('SIDE_{0}'.format(sides),

																									Drive(1),

																									transitions={'success':'success'})

				return	polygon

This	function	creates	a	StateMachine	instance,	then	adds	the	states.	First	it	adds	all	but	the
last	movement,	then	all	of	the	turns,	and	finally	it	adds	the	last	movement.	This	last
movement	is	special,	since	it’s	the	last	one	in	the	state	machine.	The	state	names	are
generated	procedurally,	as	are	the	transition	targets.	We	added	all	of	the	driving	states	first
and	then	all	the	turning	states	to	emphasize	that	we	don’t	need	to	add	states	in	any
particular	order,	as	long	as	they	are	all	wired	up	correctly.

The	addition	of	the	polygon()	function	simplifies	the	creation	of	the	triangle	and
square	state	machines:

				triangle	=	polygon(3)

				square	=	polygon(4)

Running	this	example	gives	the	same	output	as	Example	13-3,	as	we	would	expect.



Patrolling	with	State	Machines
Now	that	we’ve	seen	how	to	construct	state	machines	with	smach,	it’s	time	to	get	back	to
our	robot	and	see	how	we	can	set	up	our	patrol	with	a	simple	state	machine.	It	actually
turns	out	to	be	remarkably	straightforward:	we	only	need	to	implement	a	single	state,
corresponding	to	driving	to	a	particular	waypoint,	and	then	chain	these	states	together	to
get	the	patrol.	Example	13-5	shows	the	code.

Example	13-5.	patrol_fsm.py
#!/usr/bin/env	python

import	rospy

import	actionlib

from	smach	import	State,StateMachine

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

waypoints	=	[

				['one',	(2.1,	2.2),	(0.0,	0.0,	0.0,	1.0)],

				['two',	(6.5,	4.43),	(0.0,	0.0,	-0.984047240305,	0.177907360295)]

]

class	Waypoint(State):

				def	__init__(self,	position,	orientation):

								State.__init__(self,	outcomes=['success'])

								#	Get	an	action	client

								self.client	=	actionlib.SimpleActionClient('move_base',	MoveBaseAction)

								self.client.wait_for_server()

								#	Define	the	goal

								self.goal	=	MoveBaseGoal()

								self.goal.target_pose.header.frame_id	=	'map'

								self.goal.target_pose.pose.position.x	=	position[0]

								self.goal.target_pose.pose.position.y	=	position[1]

								self.goal.target_pose.pose.position.z	=	0.0

								self.goal.target_pose.pose.orientation.x	=	orientation[0]

								self.goal.target_pose.pose.orientation.y	=	orientation[1]

								self.goal.target_pose.pose.orientation.z	=	orientation[2]

								self.goal.target_pose.pose.orientation.w	=	orientation[3]

				def	execute(self,	userdata):

								self.client.send_goal(self.goal)

								self.client.wait_for_result()

								return	'success'

if	__name__	==	'__main__':

				rospy.init_node('patrol')

				patrol	=	StateMachine('success')

				with	patrol:

								for	i,w	in	enumerate(waypoints):

												StateMachine.add(w[0],

																													Waypoint(w[1],	w[2]),

																													transitions={'success':waypoints[(i	+	1)	%	\

																													len(waypoints)][0]})

				patrol.execute()

Each	instance	of	the	Waypoint	state	has	its	own	action	client	and	a	single	goal	point.	When
the	execute()	function	is	called,	it	sends	this	goal	to	the	nav	stack	and	waits	for	it	to
terminate.	Notice	that	the	action	client	is	created	and	waited	for	when	the	instance	is
created,	which	means	that	by	the	time	the	state	machine	is	executed	all	states	have	a
running	action	client,	and	none	of	them	have	to	wait.	We	also	pre-compute	MoveBaseGoal
in	the	constructor,	since	it’s	not	going	to	ever	change.



Creating	the	state	machine	is	just	a	case	of	getting	one	Waypoint	instance	for	each	element
in	the	waypoints	list	and	setting	up	the	transitions	correctly.	The	last	waypoint	transitions
back	to	the	first	one.

Running	this	code	will	give	exactly	the	same	behavior	as	running	Example	10-1	from	the
chapter	about	navigating	around	the	world.	However,	the	new	version	of	the	code	is	better
encapsulated	and	more	extensible	(as	we	will	see	later	on	in	the	book).



A	Better	Way	to	Patrol
Using	states	to	issue	action	requests	is	a	common	design	pattern	in	ROS.	So	much	so,	in
fact,	that	there’s	a	special-purpose	mechanism	that	helps	us	to	do	it	more	efficiently	than
in	Example	13-5.	The	smach_ros	package	contains	a	number	of	ROS-specific	states	that
can	simplify	state	machine	construction,	as	we	can	see	in	Example	13-6.

Example	13-6.	better_patrol_fsm.py
#!/usr/bin/env	python

import	rospy

from	smach	import	StateMachine		

from	smach_ros	import	SimpleActionState		

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

waypoints	=	[

				['one',	(2.1,	2.2),	(0.0,	0.0,	0.0,	1.0)],

				['two',	(6.5,	4.43),	(0.0,	0.0,	-0.984047240305,	0.177907360295)]

]

if	__name__	==	'__main__':

				rospy.init_node('patrol')

				patrol	=	StateMachine(['succeeded','aborted','preempted'])

				with	patrol:

								for	i,w	in	enumerate(waypoints):

												goal_pose	=	MoveBaseGoal()

												goal_pose.target_pose.header.frame_id	=	'map'

												goal_pose.target_pose.pose.position.x	=	w[1][0]

												goal_pose.target_pose.pose.position.y	=	w[1][1]

												goal_pose.target_pose.pose.position.z	=	0.0

												goal_pose.target_pose.pose.orientation.x	=	w[2][0]

												goal_pose.target_pose.pose.orientation.y	=	w[2][1]

												goal_pose.target_pose.pose.orientation.z	=	w[2][2]

												goal_pose.target_pose.pose.orientation.w	=	w[2][3]

												StateMachine.add(w[0],

																													SimpleActionState('move_base',

																																															MoveBaseAction,

																																															goal=goal_pose),

																													transitions={'succeeded':waypoints[(i	+	1)	%	\

																																			len(waypoints)][0]})

				patrol.execute()

We	don’t	need	to	import	State	any	more,	since	we’re	not	using	it	now.

We	do	need	to	import	SimpleActionState	from	smach_ros,	though.

In	this	code,	we’ve	replaced	our	Waypoint	state	class	with	a	SimpleActionState	instance.
This	takes	the	name	of	the	action	(move_base),	the	type	of	the	action	(MoveBaseAction),
and	the	action	goal	(constructed	from	the	waypoint	list).	Notice	how	this	greatly	simplifies
our	code;	the	largest	single	part	is	now	setting	the	fields	in	the	goal	state.



Summary
In	this	chapter,	we’ve	seen	how	to	build	simple	state	machines	in	ROS	using	smach	and
how	these	machines	can	be	used	to	control	a	robot	at	the	task	level.	In	particular,	we’ve
seen	how	to	rewrite	the	simple	patrol	code	from	Chapter	10	to	use	a	state	machine	under
the	hood.	It	turns	out	that	a	lot	of	robot	control	code	has	this	sort	of	structure,	where
mostly	independent	behaviors	are	chained	together.	The	Wander-bot	example	discussed	in
Chapter	7	is	a	great	example.	Take	a	look	at	the	code	in	Example	7-3	again;	an	alternative
smach	implementation	should	jump	out	at	you	now.

TIP
smach	has	a	lot	more	functionality	than	we’ve	covered	in	this	chapter.	As	always,	more	details	are	available
at	the	smach	wiki	page	and	the	smach_ros	wiki	page.

Up	to	this	point,	we’ve	mostly	looked	as	how	to	get	your	robot	to	do	a	set	of	fairly	specific	tasks	wiht	ROS.
In	the	next	chapter,	we’re	going	to	combine	these	ideas	(and	more)	to	build	a	complete	application:	a	robot
that	works	in	a	stockroom.

http://wiki.ros.org/smach?distro=indigo
http://wiki.ros.org/smach_ros?distro=indigo




Chapter	14.	Stockroom-bot

In	this	chapter,	we	will	combine	some	of	the	techniques	introduced	in	previous	chapters	to
program	a	robot	to	move	items	around	in	a	stockroom.	This	type	of	task	is	common	in
many	industries	where	goods	are	stored	with	controlled	access,	from	the	relatively	small
“cage”	rooms	in	retail	stores	where	high-value	items	are	stored,	to	the	chemical	and
medical	supply	rooms	in	hospitals,	and	all	the	way	up	through	the	massive,	highly
controlled	warehouses	used	to	fulfill	ecommerce	orders	and	handle	the	supply	chains	of
large	manufacturing	corporations.	Despite	the	varied	applications,	many	tasks	in	these
stockrooms	are	quite	similar:	items	are	precisely	organized	in	a	restricted-access	area,	and
they	need	to	be	gathered	in	response	to	incoming	requests.

As	we	have	emphasized	throughout	this	book,	it	is	all	but	impossible	to	write	robust,
complex	robot	software	without	a	simulation	environment.	Accordingly,	we	will	spend	the
first	portion	of	this	chapter	creating	a	simulated	stockroom.	As	always,	the	time	spent
creating	a	good	simulation	model	pays	huge	dividends	in	robot	software	development!



Stockroom	Simulation
Let’s	get	started	by	creating	a	workspace	called	ws	for	our	stockroom_bot	package:

user@hostname$	mkdir	-p	~/ws/src/stockroom_bot

user@hostname$	cd	~/ws/src/stockroom_bot

Next,	we’ll	create	a	minimal	package.xml	file	in	this	directory,	shown	in	Example	14-1,
that	will	allow	the	ROS	package	management	system	to	find	the	files	we’ll	create	during
this	chapter.

Example	14-1.	package.xml	for	stockroom_bot
<?xml	version="1.0"?>

<package>

		<name>stockroom_bot</name>

		<version>0.0.0</version>

		<description>The	stockroom_bot	package</description>

		<maintainer	email="maintainer@example.com">Name	of	Maintainer</maintainer>

		<license>BSD</license>

		<author	email="author@example.com">Name	of	Author</author>

		<buildtool_depend>catkin</buildtool_depend>

		<build_depend>rospy</build_depend>

		<run_depend>rospy</run_depend>

</package>

Then,	catkin	will	create	our	terminal	initialization	scripts	in	~/ws/devel	on	the	initial
invocation	of	catkin_make	:

user@hostname$	cd	~/ws

user@hostname$	catkin_make

As	usual	in	ROS-	and	Gazebo-based	software	development,	we’ll	be	using	many	terminal
windows.	It	will	save	us	a	lot	of	typing	if	we	set	up	a	bash	alias	so	that	we	can	quickly	set
up	our	terminal	environments.	We	can	create	an	alias	called	sb,	as	an	abbreviation	for
stockroom_bot,	by	placing	this	line	at	the	end	of	~/.bashrc	:

user@hostname$	alias	sb='source	~/ws/devel/setup.bash;	\

		export	GAZEBO_MODEL_PATH=${HOME}/ws/src/stockroom_bot'

Once	we	have	reloaded	the	~/.bashrc	file	or	started	a	new	terminal,	whenever	we	start	to
configure	a	terminal	for	stockroom_bot	development	or	testing,	we	can	just	type	sb	at	the
command	line.	This	will	make	your	life	much	easier	and	helps	you	to	manage
environment	configurations	when	you	have	multiple	development	projects	on	your
machine	at	the	same	time.

TIP
Whenever	you	find	yourself	typing	something	more	than	once	or	twice	in	a	terminal	window,	setting	up	a
quick	bash	alias	will	often	make	your	life	at	the	terminal	more	pleasant.

Now,	let’s	get	started	on	simulating	a	stockroom	with	our	newly	configured	workspace.
Many	stockrooms	are	organized	by	placing	smaller	items	into	a	uniform	set	of	bins,	which
are	then	labeled	with	the	names	of	the	items	they	contain.	To	get	started	with	our



stockroom	simulation,	we	will	first	model	a	bin.	Of	course,	bins	come	in	all	shapes	and
sizes,	depending	on	the	application.	In	our	case,	we	want	to	model	bins	that	can	hold	items
that	a	hand-sized	robot	gripper	can	easily	pick	up,	so	we’ll	make	our	bins	40	cm	square
and	20	cm	tall.

As	usual	in	ROS	and	Gazebo,	there	are	many	ways	that	one	could	accomplish	this	task.	It
is	possible,	for	example,	to	make	an	intricate	model	in	a	3D	modeling	or	CAD	program
and	export	the	geometry	into	a	format	that	Gazebo	can	understand.	However,	since	we
may	want	to	have	a	large	number	of	bins	in	our	simulated	stockroom,	we	will	opt	to
manually	create	the	bin	out	of	the	minimum	number	of	primitive	shapes	in	Gazebo,	to
make	the	simulation	as	fast	as	possible.

First,	let’s	make	directories	in	our	package	for	the	local	Gazebo	storage	and	for	our	bin
model:

user@hostname$	mkdir	-p	~/ws/src/stockroom_bot/models/bin

Because	the	models	directory	is	referenced	by	the	GAZEBO_MODEL_PATH	environment
variable	that	we	configured	earlier,	it	will	be	crawled	by	Gazebo	at	startup.	As	such,	the
models	directory	must	adhere	to	a	specific	structure,	where	all	subdirectories	have	a
“magic”	file	called	model.config	that	describes	the	version	of	the	model	format	and	links
to	the	other	files	that	contain	the	actual	model.	In	our	case,	the	minimal	model.config	file
we	can	place	in	models/bin	is	shown	in	Example	14-2,	which	simply	provides	a	name	and
tells	Gazebo	that	the	actual	bin	model	will	be	in	a	file	called	model.sdf.

Example	14-2.	Bin	model.config
<?xml	version="1.0"?>

<model>

		<name>Bin</name>

		<sdf	version="1.4">model.sdf</sdf>

</model>

The	actual	modeling	happens	in	the	model.sdf	file.	Here,	we	will	model	our	bin	as	having
five	sides,	each	of	which	is	a	rectangular	prism,	or	a	box,	in	the	terminology	of	the
Simulation	Description	File	(SDF)	format	that	can	be	parsed	by	Gazebo.

To	make	this	easier	to	show	on	a	printed	page,	we	have	only	included	the	bottom	and	left
sides	of	the	bin	in	Example	14-3.	The	remaining	three	sides	are	similar,	and	as	for	other
the	examples	in	the	book,	the	full	source	code	can	be	downloaded	from	the	Web;	it	is	only
shown	here	for	explanatory	purposes.

Example	14-3.	Bin	model.sdf
<?xml	version='1.0'?>

<sdf	version	='1.4'>

		<model	name	='box'>	

				<static>true</static>	

				<link	name='bottom'>	

						<collision	name="collision_bottom">

								<geometry>

										<box>

												<size>0.4	0.4	0.02</size>	

										</box>

								</geometry>



						</collision>

						<collision	name="collision_left">	

								<pose>-0.2	0	0.1	0	0	0</pose>	

								<geometry><box><size>0.02	0.4	0.2</size></box></geometry>

						</collision>

						<visual	name="visual_bottom">

								<geometry><box><size>0.4	0.4	0.02</size></box></geometry>

								<material><script><name>Gazebo/Blue</name></script></material>	

						</visual>

						<visual	name="visual_left">

								<pose>-0.2	0	0.1	0	0	0</pose>

								<geometry><box><size>0.02	0.4	0.2</size></box></geometry>

								<material><script><name>Gazebo/Blue</name></script></material>

						</visual>

				</link>

		</model>

</sdf>

The	<model>	tag’s	name	attribute	must	agree	with	the	name	in	the	model.config	file.

The	<static>	tag	means	that	Gazebo	won’t	have	to	compute	dynamics	on	this
model.	This	saves	considerable	CPU	time.

The	<link>	tag	can	include	multiple	<collision>	and	<visual>	tags	that	describe
the	geometries	used	for	physics	and	rendering,	respectively.	In	this	model,	they	are
the	same,	but	often	the	collision	shapes	are	much	simpler	than	the	visual	shapes.

This	nesting	of	<geometry><box><size>	tags	will	create	a	40	cm	x	40	cm	x	2	cm
box.	In	the	rest	of	the	file,	these	tags	are	combined	on	the	same	line,	for	simplicity.

Each	collision	and	visual	object	must	have	a	unique	name	attribute!

The	<pose>	tag	will	move	the	geometry	objects	in	this	tag	away	from	the	origin	by
the	specified	6D	(x	y	z	roll	pitch	yaw)	transformation.

This	<material>	tag	refers	to	a	built-in	Gazebo	material	to	set	the	shape’s	color.

The	bin	model	is	shown	rendered	in	Gazebo	in	Figure	14-1.



Figure	14-1.	The	bin	described	in	Example	14-3	rendered	Gazebo

Our	next	task	will	be	to	create	a	label	for	each	of	the	bins.	In	a	human-operated
stockroom,	this	is	typically	done	by	printing	characters	on	labels	that	are	attached	to	the
bins.	However,	machine	vision	often	works	better	with	different	forms	of	labels	that	are
easier	for	algorithms	to	parse.	The	retail	bar-code	system	is	one	well-known	example	of
machine-friendly	labeling.	There	are	several	newer	forms	of	labeling	that	extend	this
concept	into	two	dimensions,	such	as	QR	codes,	which	have	impressive	information
density.	However,	in	robotics,	we	are	often	interested	not	just	in	extracting	text	from	a
label,	but	also	in	calculating	the	orientation	and	distance	of	the	label	relative	to	the	robot.
Although	there	are	several	options	available,	in	this	chapter	we	will	use	the	ALVAR
marker	system	because	it	is	already	integrated	with	ROS	and	works	quite	well	“out	of	the
box.”	ALVAR	marker	tags	are	two-dimensional	binary	images,	such	as	those	in	Figure	14-
2.



Figure	14-2.	Example	ALVAR	marker	tags	that	encode	the	numbers	0,	1,	and	2

The	encoding	of	these	tags	is	carefully	computed	to	reduce	reading	errors	and	to	permit
accurate	calculation	of	the	orientation	and	distance	of	the	tag	relative	to	a	camera	that
images	it.	Some	care	is	required	to	use	them	appropriately,	such	as	solidly	securing	the
tag’s	paper	printout	to	a	flat	surface,	and	ensuring	that	the	tag	is	printed	at	the	correct
scale;	however	by	and	large,	ALVAR	marker	tags	can	work	surprisingly	well	in	a	variety
of	application	environments.	Happily,	there	is	a	ready-made	ROS	package	for	recognizing
ALVAR	tags	in	ROS	sensor_msgs/Image	messages.	It	can	be	installed	the	usual	way	on
Ubuntu:

user@hostname$	sudo	apt-get	install	ros-indigo-ar-track-alvar*	imagemagick

That	package	also	provides	a	program	that	can	create	the	ALVAR	marker	tags.	Our
simulated	stockroom	will	have	12	bins,	so	we’ll	want	to	automatically	create	12	ALVAR
tag	image,	and	12	“material	script”	files,	which	are	used	by	Gazebo	and	its	underlying
graphics	engine	(OGRE)	to	describe	the	visual	properties	of	objects	in	the	simulation,
such	as	texture	images	that	can	be	“plastered”	on	objects.	Later	on,	we	will	reference	these
material	scripts	in	a	Gazebo	world	file.

Like	any	repetitive	task,	we	want	to	script	the	creation	of	the	ALVAR	tag	images	and	the
material	script	files,	so	that	we	can	easily	tweak	the	parameters	and	regenerate	them	as
needed.	Although	any	scripting	language	could	be	used,	for	consistency,	we	used	Python
to	create	a	script	for	this	purpose;	it	is	listed	in	Example	14-4.

Example	14-4.	generate_codes_and_materials.py
#!/usr/bin/env	python

import	os

for	i	in	xrange(0,12):

				os.system("rosrun	ar_track_alvar	createMarker	{0}".format(i))	

				fn	=	"MarkerData_{0}.png".format(i)

				os.system("convert	{0}	-bordercolor	white	-border	100x100	{0}".format(fn))	

				with	open("product_{0}.material".format(i),	'w')	as	f:	

						f.write("""

material	product_%d	{

		receive_shadows	on

		technique	{

				pass	{

						ambient	1.0	1.0	1.0	1.0

						diffuse	1.0	1.0	1.0	1.0

						specular	0.5	0.5	0.5	1.0



						lighting	on

						shading	gouraud

						texture_unit	{	texture	MarkerData_%d.png	}

				}

		}

}

"""	%	(i,	i))

Runs	the	createMarker	program	in	the	ar_track_alvar	package,	which	creates	a
PNG	image	that	encodes	the	specified	number.	Although	a	more	sophisticated
program	could	use	subprocess.call()	and	check	error	codes,	etc.,	this	example	is
just	trying	to	be	as	concise	as	possible.

Runs	the	ImageMagick	utility	to	add	a	thick	white	border	around	the	ALVAR	marker
tag,	to	help	improve	recognition.

Generates	material	scripts	that	include	a	reference	(toward	the	end)	to	the	ALVAR
texture	image.

TIP
The	Eye-of-GNOME	program,	invoked	using	eog,	is	a	handy	way	to	quickly	view	images	on	the	command
line,	such	as	the	ALVAR	marker	images	produced	by	the	ar_track_alvar	createMarker	command.

Now	that	we	have	the	ALVAR	marker	tag	images	and	material	scripts	to	label	each	bin,
we’re	ready	to	make	an	entire	stockroom	full	of	them.	Yet	again,	we	are	faced	with	a
choice	among	an	innumerable	number	of	ways	that	we	can	do	this.	We	could	write	a
single	massive	XML	file	by	hand	that	instantiates	the	bin	model	as	many	times	as	needed.
That	would	work,	but	it	would	be	painful	if	we	decided	we	wanted	a	slightly	different	bin
spacing	in	our	simulated	stockroom,	which	would	require	hand-editing	many	constants	in
the	XML.	We	could	also	spawn	the	bin	models	programmatically,	like	we	did	for	the
chessboard.	That	would	incur	a	bit	of	startup	time,	but	it	could	work.	Or	we	could	use	the
xacro	(XML	Macros)	language,	but	unfortunately	that	system	doesn’t	allow	for	loops,
which	means	we’d	still	have	quite	a	few	constants	repeated	throughout	the	file.	In	this
chapter,	we’ll	show	another	way	to	create	Gazebo	worlds	full	of	repetitive	models:	using	a
Python	template	engine.

A	Python	template	engine	will	let	us	mix	Python	with	our	XML	in	the	Gazebo	world	file.
This	will	allow	us,	for	example,	to	quickly	create	for	loops	in	the	XML,	which	the	Python
template	engine	will	process	and	expand	into	repeated	blocks	of	XML	code.	We	can	also
use	“normal”	programming	constructs	like	functions	and	variables,	which	we’ll	use	to
shorten	the	code	wherever	possible.

There	are	many	Python	template	engines	available,	but	we’ll	use	the	EmPy	engine	in	this
example.	Modeling	a	world	with	various	types	of	repeating	features	is	a	complex	task,	and
we	will	go	through	the	templated	world	file	in	several	sections.

First,	we	need	to	install	EmPy,	if	it	isn’t	already	installed	on	the	system:



user@hostname$	sudo	apt-get	install	python-empy

The	start	of	the	file	to	generate	the	XML	Gazebo	would	for	the	stockroom	simulationis
shown	in	Example	14-5.

Example	14-5.	Header	of	the	EmPy	template	to	generate	the	Gazebo	world
<?xml	version="1.0"	?>

<sdf	version="1.4">

<world	name="stockroom">

<gui>

		<camera	name="camera">	

				<pose>3	-2	3.5	0.0	.85	2.4</pose>

				<view_controller>orbit</view_controller>

		</camera>

</gui>

<include><uri>model://sun</uri></include>

<include><uri>model://ground_plane</uri></include>

The	<camera>	tag	specifies	a	camera	location,	so	that	you	don’t	have	to	manually
move	the	camera	to	a	useful	vantage	point	every	time	you	start	the	simulation.

So	far,	so	good.	But	now	things	get	a	bit	unusual:	the	EmPy	templating	engine	can
“interleave”	Python	with	XML,	using	the	at	sign	(@)	symbol	as	a	delimiter.	Anything
within	curly	braces	following	an	at	sight	(@{})will	execute	as	“normal”	Python	code.
Anything	within	parentheses	(@())	will	be	evaluated	as	a	Python	expression,	and	the
evaluation	of	the	expression	will	be	pasted	into	the	XML	document	in	the	place	of	the	@()
expression.	Finally,	anything	within	square	brackets	(@[])	is	considered	a	Python	control
structure	to	be	used	by	EmPy:	for	loops,	if/else	blocks,	and	so	on.	EmPy,	of	course,	is	a
large	system	with	its	own	manual,	but	those	three	rules	are	enough	to	be	able	to
understand	the	code.	Keeping	that	EmPy	syntax	in	mind,	the	EmPy	XML	template	used	to
generate	an	aisle	of	bins	is	shown	in	Example	14-6.

Example	14-6.	Section	of	EmPy	XML	template	used	to	generate	two	rows	of	bins
@{from	numpy	import	arange}	

@{bin_count	=	0}

@[for	side	in	['left','right']]	

		@[if	side	==	'left']

				@{y	=	-1.5}	

				@{yaw	=	3.1415}

		@[else]

				@{y	=	1.5}

				@{yaw	=	0}

		@[end	if]

		@[for	x	in	arange(-1.5,	1.5,	0.5)]	

				<include>

						<name>bin_@(bin_count)</name>	

						<pose>@(x)	@(y)	0.5	0	0	@(yaw)</pose>	

						<uri>model://bin</uri>	

				</include>

				<model	name="bin_@(bin_count)_tag">	

						<static>true</static>

						<pose>@(x)	@(y*1.125)	0.63	0	0	@(yaw)</pose>	

						<link	name="link">

								<visual	name="visual">

										<geometry><box><size>0.2	0.01	0.2</size></box></geometry>

										<material>

												<script>

														<uri>model://bin/tags</uri>	

														<name>product_@(bin_count)</name>	



												</script>

										</material>

								</visual>

						</link>

				</model>

				@{bin_count	+=	1}

		@[end	for]

@[end	for]

This	is	“normal”	Python:	we	can	import	packages	as	usual.

Despite	the	funny	escape	brackets,	this	is	again	just	“normal”	Python.

The	y	and	yaw	variables	differ	depending	on	whether	we’re	on	the	left	or	right	side	of
the	aisle	of	bins.

The	numpy	arange()	function	lets	us	increment	a	for	loop	using	a	floating-point	step,
which,	in	this	case,	we	will	use	to	position	the	bins.

The	@(bin_count)	expression	is	used	to	generate	unique	model	names	for	the	bins	in
Gazebo.

The	position	variables	are	used	to	space	the	bins	appropriately.	Note	that	by	varying
the	y	and	the	step	of	the	x	variable,	we	can	easily	change	the	layout	of	the	bin
spacing.

This	refers	to	the	bin	model	that	we	made	earlier	in	this	chapter,	thanks	to	the
GAZEBO_MODEL_PATH	variable	we	have	set	in	our	environment.

Next,	we	will	create	thin	boxes	that	will	be	“painted”	with	the	ALVAR	markers,	to
label	the	bins.

The	tags	will	be	positioned	on	the	back	walls	of	the	bins.

The	uri>	tag	tells	Gazebo	where	we	have	placed	the	material	scripts.

This	expression	references	the	material	scripts	that	we	made	previously,	which,	in
turn,	reference	the	actual	ALVAR	marker	images.

The	EmPy	XML	in	Example	14-6	is	enough	to	create	the	bins,	but	we	also	need	some
walls	in	our	stockroom	so	that	the	robot’s	laser	scanner	can	have	something	to	localize
against.	Again,	there	are	many	ways	to	model	walls,	but	since	we	were	already	evaluating
the	Gazebo	world	file	with	the	EmPy	template	engine,	we	opted	to	define	the	walls	using
Python	functions	in	EmPy,	as	shown	in	Example	14-7.



Example	14-7.	Section	of	EmPy	XML	template	used	to	generate	the	stockroom	walls
@[def	wall(p1,	p2,	height)]	

		@{wall.count	+=	1}

		@[if	abs(p1[0]-p2[0])	<	0.01]	

				@{thickness_x	=	0.1}

				@{thickness_y	=	abs(p1[1]-p2[1])}

		@[else]

				@{thickness_x	=	abs(p1[0]-p2[0])}

				@{thickness_y	=	0.1}

		@[end	if]

		<model	name="wall_@(wall.count)">	

				<static>true</static>

				<pose>@((p1[0]+p2[0])/2.)	@((p1[1]+p2[1])/2.)	@(height/2.)	0	0	0</pose>

				<link	name="link">

						<collision	name='visual'>	

								<geometry>

										<box>

												<size>@(thickness_x)	@(thickness_y)	@(height)</size>

										</box>

								</geometry>

						</collision>

						<visual	name='visual'>

								<geometry>

										<box>

												<size>@(thickness_x)	@(thickness_y)	@(height)</size>

										</box>

								</geometry>

						</visual>

				</link>

		</model>

@[end	def]

@{wall.count	=	0}

@(	wall((-1.75,	-1.75),	(	6.00	,	-1.75),	1)	)	

@(	wall((-1.75,	-1.75),	(-1.75,			1.75),	1)	)

@(	wall((-1.75,		1.75),	(	6.00,			1.75),	1)	)

@(	wall((	3.00,		0.75),	(	3.00,			1.75),	1)	)

@(	wall((	3.00,	-0.75),	(	3.00,		-1.75),	1)	)

@(	wall((	6.00,	-1.75),	(	6.00,		-1.00),	1)	)

@(	wall((	6.00,		0.00),	(	6.00,			1.75),	1)	)

@(	wall((	5.00,	-1.75),	(	5.00,			1.75),	0.7)	)

		<model	name="counter_top">

				<static>true</static>

				<pose>4.9	0	0.7	0	0	0</pose>

				<link	name="link">

						<visual	name="collision">

								<geometry><box><size>0.4	3.5	0.05</size></box></geometry>

						</visual>

						<visual	name="visual">

								<geometry><box><size>0.4	3.5	0.05</size></box></geometry>

						</visual>

				</link>

		</model>

</world>

</sdf>

Even	though	it	looks	a	bit	strange	with	the	brackets,	this	is	a	normal	Python	function
declaration	using	EmPy	escaping	syntax.

This	simplistic	code	assumes	that	walls	are	aligned	along	the	x-axis	or	the	y-axis,
which	is	often	the	case	in	traditional	commercial	buildings.

As	before,	we	are	using	a	Python	counter	variable	to	generate	unique	model	names	as
the	template	engine	cycles	through	the	for	loop.



The	collision	and	visual	objects	are	identical	in	this	case,	since	they	are	both	as
simple	as	possible.

These	EmPy	evaluation	expressions	use	the	wall()	function	defined	earlier	to	create
the	stockroom	walls	in	a	way	that	makes	it	relatively	quick	to	modify	the	dimensions
later.

Whew!	That	was	a	lot	of	XML.	Using	EmPy	helped	to	simplify	the	task:	the	template
expansion	of	the	EmPy	input	shown	in	Example	14-5,	Example	14-6,	and	Example	14-7
comes	out	to	well	over	500	lines	of	XML.	To	generate	the	output	of	the	EmPy	expansion,
we	use	shell	redirection:

user@hostname$	empy	aisle.world.em	>	aisle.world

The	resulting	aisle.world	file	can	be	loaded	directly	by	Gazebo:

user@hostname$	gazebo	aisle.world

All	this	work	has	paid	off:	we	now	have	a	stockroom	simulation	that	we	can	use	for
software	development	and	testing,	with	all	of	the	numerous	strategic	benefits	this	provides
(enumerated	in	prior	chapters).	An	overview	screenshot	of	the	world	is	shown	in
Figure	14-3,	and	a	close-up	showing	a	row	of	storage	bins	with	ALVAR	markers	is	shown
in	Figure	14-4.

Figure	14-3.	The	stockroom	simulation

Finally,	let’s	put	some	items	in	our	stockroom.	For	now,	we’ll	just	drop	an	identical	small
box	into	each	bin.	Since	we	may	want	to	randomize	the	box	position	and	orientation	in	the
future,	we’ll	place	these	models	programmatically,	just	like	we	did	in	Chapter	11.



Example	14-8	shows	a	Python	script	that	will	spawn	models	for	the	items	in	our
stockroom	and	place	them	in	their	storage	bins.

Figure	14-4.	A	close-up	rendering	of	the	simulated	storage	bin	arrangement,	showing	their	ALVAR	markers

Example	14-8.	stock_products.py
#!/usr/bin/env	python

import	rospy,	tf

from	gazebo_msgs.srv	import	*

from	geometry_msgs.msg	import	*

if	__name__	==	'__main__':

		rospy.init_node("stock_products")

		rospy.wait_for_service("gazebo/delete_model")	

		rospy.wait_for_service("gazebo/spawn_sdf_model")

		delete_model	=	rospy.ServiceProxy("gazebo/delete_model",	DeleteModel)

		s	=	rospy.ServiceProxy("gazebo/spawn_sdf_model",	SpawnModel)

		orient	=	Quaternion(*tf.transformations.quaternion_from_euler(0,	0,	0))

		with	open("models/product_0/model.sdf",	"r")	as	f:

				product_xml	=	f.read()	

		for	product_num	in	xrange(0,	12):

				item_name	=	"product_{0}_0".format(product_num)

				delete_model(item_name)	

		for	product_num	in	xrange(0,	12):

				bin_y	=	2.8	*	(product_num	/	6)	-	1.4	

				bin_x	=	0.5	*	(product_num	%	6)	-	1.5

				item_name	=	"product_{0}_0".format(product_num)

				item_pose	=	Pose(Point(x=bin_x,	y=bin_y,	z=2),	orient)	

				s(item_name,	product_xml,	"",	item_pose,	"world")	

wait_for_service()	is	used	to	ensure	Gazebo	is	ready	for	our	script.

We’ll	be	sending	the	item’s	model	file	over	the	ROS	service,	so	first	we	need	to	load
it	into	a	string.



First,	we	will	try	to	delete	any	prior	model	of	this	name	in	the	simulation,	in	case	this
script	has	already	been	run	before	on	the	same	instance	of	Gazebo.

This	version	of	the	script	will	always	place	the	items	in	the	same	location,	but	we
could	later	add	some	randomization	to	evaluate	system	robustness.

The	z	coordinate	is	intentionally	quite	a	bit	higher	than	the	bins.	This	lets	us	modify
the	bin	height	in	the	other	files	without	worrying	about	matching	it	here,	since	the
items	will	just	fall	in	the	simulator	until	they	come	to	rest	in	the	bin.

This	is	the	actual	call	to	the	Gazebo	spawner	service	proxy,	which	will	instantiate	our
item	models	one	at	a	time.

Now	that	we	have	our	stockroom	ready,	we	can	start	using	it	to	develop	our	robot
software!	Although	creating	the	simulation	environment	may	have	seemed	tedious,	its
utility	will	quickly	become	apparent	as	we	use	it	extensively	throughout	the	remainder	of
the	chapter.



Driving	to	Bins
The	simulated	stockroom	allows	us	to	try	out	a	number	of	different	ideas	relatively
quickly	and	easily.	We	can	even	try	to	drop	various	robot	models	into	the	stockroom	to	see
how	they	fit.	For	example,	Figure	14-5	shows	a	PR2	robot	dropped	into	the	stockroom.

Although	the	PR2	could	definitely	accomplish	this	task,	for	the	remainder	of	this	chapter,
we	will	use	the	Fetch	robot,	manufactured	by	Fetch	Robotics.	A	model	of	Fetch	is	freely
available	and	can	be	easily	installed	on	Ubuntu:

user@hostname$	sudo	apt-get	install	ros-indigo-fetch*

Figure	14-5.	A	PR2	robot	dropped	into	the	simulated	stockroom

The	Fetch	robot	is	designed	specifically	for	the	domain	of	warehouse	automation,	and	its
one-arm	design	and	relatively	compact	footprint	are	a	good	match	to	the	stockroom
system	that	we	are	developing	in	this	chapter.	We	can	start	Gazebo	with	our	stockroom
world	and	spawn	a	Fetch	robot	in	the	middle	of	it	using	stockroom.launch,	shown	in
Example	14-9.	This	will	produce	the	scene	shown	in	Figure	14-6.

Example	14-9.	stockroom.launch
<launch>

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch">

				<arg	name="world_name"	value="$(find	stockroom_bot)/worlds/aisle.world"/>

		</include>

		<include	file="$(find	fetch_gazebo)/launch/include/fetch.launch.xml"/>

</launch>



As	described	in	Chapters	9	and	13,	the	first	thing	we	need	to	do	for	autonomous
navigation	is	to	create	a	map.	To	do	this,	just	like	in	the	previous	chapters,	we	teleoperate
the	robot	while	recording	its	laser	scanner	readings	and	odometry,	which	are	broadcast	on
the	/base_scan	and	/tf	topics,	respectively:

user@hostname$	rosbag	record	-O	stockroom_bot.bag	/base_scan	/tf

Figure	14-6.	A	Fetch	robot	dropped	into	the	simulated	stockroom

After	driving	around	the	world	so	that	the	laser	scanner	has	seen	all	of	the	corners	to	build
its	map,	just	Ctrl-C	the	logger,	teleoperation,	and	simulation.	This	is	necessary	because,
when	playing	back	the	bag	file,	the	ROS	clock	will	skip	backward	in	time,	which	would
confuse	unsuspecting	programs.

First,	in	a	fresh	terminal,	we’ll	explicitly	tell	ROS	to	source	its	clock	from	the	logged
simulation	time:

user@hostname$	rosparam	set	use_time_time	true

Next,	we’ll	start	the	SLAM	system:

user@hostname$	rosrun	gmapping	slam_gmapping	scan:=base_scan	\

		_odom_frame:=odom_combined



and	then	start	playing	back	the	log	file:

user@hostname$	rosbag	play	--clock	stockroom_bot.bag

The	slam_gmapping	terminal	will	print	status	messages	as	it	processes	the	laser	scans	and
robot	odometry	data.	After	the	log	has	finished	playing,	just	as	in	Chapter	9,	we’ll	need	to
save	the	map	to	an	image	file.	Start	up	a	new	terminal	and	run	the	map_saver	command:

user@hostname$	rosrun	map_server	map_saver

This	will	create	map.pgm	in	your	current	working	directory.	Since	the	robot	has	a	laser
scanner	and	reasonable	odometry,	the	map	will	look	very	nice,	as	shown	in	Figure	14-7.

Figure	14-7.	A	map	of	the	simulation	stockroom,	which	will	be	used	for	robot	navigation.

Because	the	stockroom	is	so	much	smaller	than	the	maps	shown	in	the	preceding	chapters,
the	map.yaml	file	will	be	different,	since	we	only	need	a	20	×	20	meter	map,	as	shown	in
Example	14-10.

Example	14-10.	map.yaml
image:	map.pgm

resolution:	0.050000

origin:	[-10.000000,	-10.000000,	0.000000]

negate:	0

occupied_thresh:	0.65

free_thresh:	0.196

Now	that	we	have	built	a	map	of	the	stockroom,	we	can	feed	it	to	the	Fetch	navigation
subsystem,	which,	like	in	the	PR2	and	many	other	robots,	is	built	on	the	ROS	move_base
navigation	stack.	The	launch	file	listed	in	Example	14-11	shows	how	to	feed	the	map	into
the	navigation	stack.

Example	14-11.	nav.launch
<launch>

		<include	file="$(find	fetch_navigation)/launch/fetch_nav.launch">

				<arg	name="map_file"	value="$(find	stockroom_bot)/map.yaml"/>

		</include>

		<node	pkg="stockroom_bot"	name="initial_localization"

								type="initial_localization.py"/>

</launch>

Now	that	the	Fetch	navigation	system	is	up,	we	can	feed	navigation	goals	to	it	using	the
same	move_base	action	interface	described	in	the	previous	chapter.	Because	we	know	the
structure	of	our	stockroom,	we	can	incorporate	the	bin	spacing	in	a	Python	script	and	refer
to	the	bins	by	their	numeric	indices	on	the	command	line,	rather	than	their	2D	spatial
coordinates.	Example	14-12	shows	how	we	can	take	a	bin-number	command,	calculate	the
2D	coordinate	of	the	bin,	and	feed	that	as	a	target	to	the	robot’s	navigation	stack.



Example	14-12.	go_to_bin.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	actionlib

from	geometry_msgs.msg	import	*

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

from	tf.transformations	import	quaternion_from_euler

from	std_srvs.srv	import	Empty

from	look_at_bin	import	look_at_bin

if	__name__	==	'__main__':

		rospy.init_node('go_to_bin')

		rospy.wait_for_service("/move_base/clear_costmaps")

		rospy.ServiceProxy("/move_base/clear_costmaps",	Empty)()

		args	=	rospy.myargv(argv=sys.argv)

		if	len(args)	!=	2:

				print	"usage:	go_to_bin.py	BIN_NUMBER"

				sys.exit(1)

		bin_number	=	int(args[1])

		move_base	=	actionlib.SimpleActionClient('move_base',	MoveBaseAction)

		move_base.wait_for_server()

		goal	=	MoveBaseGoal()

		goal.target_pose.header.frame_id	=	'map'

		goal.target_pose.pose.position.x	=	0.5	*	(bin_number	%	6)	-	1.5;

		goal.target_pose.pose.position.y	=	1.1	*	(bin_number	/	6)	-	0.55;

		if	bin_number	>=	6:

				yaw	=	1.57

		else:

				yaw	=	-1.57

		orient	=	Quaternion(*quaternion_from_euler(0,	0,	yaw))

		goal.target_pose.pose.orientation	=	orient

		move_base.send_goal(goal)

		move_base.wait_for_result()

		look_at_bin()



Picking	Up	the	Item
Once	the	robot	has	arrived	in	front	of	a	bin,	the	next	step	is	to	point	the	robot’s	head	so
that	it	is	aiming	at	the	bin.	There	are	many	ways	to	do	this,	and	the	best	choice	will	be
somewhat	dependent	on	the	ROS	API	of	the	robot	in	question.	The	Fetch	robot	provides
an	action	server	called	head_controller/point_head,	which	we	can	call	from	Python	to
aim	the	head	in	the	correct	direction.	Example	14-13	shows	a	minimalist	program	that
uses	this	action	interface	to	command	the	Fetch	robot’s	head	to	point	down,	toward	the	bin
in	front	of	it.

Example	14-13.	look_at_bin.py
#!/usr/bin/env	python

import	sys,	rospy,	actionlib

from	control_msgs.msg	import	PointHeadAction,	PointHeadGoal

def	look_at_bin():

		head_client	=	actionlib.SimpleActionClient("head_controller/point_head",

				PointHeadAction)

		head_client.wait_for_server()

		goal	=	PointHeadGoal()

		goal.target.header.stamp	=	rospy.Time.now()

		goal.target.header.frame_id	=	"base_link"

		goal.target.point.x	=	0.7

		goal.target.point.y	=	0

		goal.target.point.z	=	0.4

		goal.min_duration	=	rospy.Duration(1.0)

		head_client.send_goal(goal)

		head_client.wait_for_result()

if	__name__	==	'__main__':

		rospy.init_node('look_at_bin')

		look_at_bin()

Even	though	Example	14-12	will	send	the	perfectly	correct	position	of	where	we	want	the
robot	to	park	so	that	it	can	reach	an	item	in	the	bin,	often	the	robot	won’t	end	up	exactly
where	we	asked.	This	is	due	to	many	factors,	including	localization	noise	and	the
navigation	system’s	goal	tolerance,	since,	especially	on	differential-drive	robots	like	the
Fetch,	the	navigation	system	doesn’t	want	the	robot	to	have	to	do	many	“parallel-park”
maneuvers	to	budge	sideways	a	few	centimeters.	All	navigation	systems	have	a	nonzero
goal	tolerance,	within	which	the	navigation	system	just	declares	victory	and	stops	trying	to
reposition	the	robot.	All	of	these	parameters	will	vary	depending	on	the	robot	and
environment,	but	in	our	simulated	Fetch	system,	we	can	expect	position	errors	of	plus	or
minus	10	centimeters.	This	produces	the	situation	shown	in	Figure	14-8,	where	the	robot
is	in	approximately	the	right	position	but	is	certainly	not	exactly	aligned	with	the	target
bin.



Figure	14-8.	Laser-only	navigation	can	result	in	not-quite	perfect	alignment

Fortunately,	our	bins	are	labeled	with	ALVAR	markers!	We	can	program	the	robot	to	use
the	estimated	ALVAR	marker	range	and	relative	orientation	so	that	it	can	derive
manipulation	targets	from	the	visual	marker,	rather	than	relying	on	extraordinary	precision
from	the	navigation	system.	This	will	typically	be	considerably	more	accurate	than	what
the	laser-based	navigation	system	can	achieve.

First,	we	need	to	fire	up	the	ALVAR	detector	node.	Example	14-14	shows	a	launch	file
that	will	start	an	ALVAR	tracker	node	from	the	ar_track_alvar	package.	This	launch	file
also	creates	a	static	transform	broadcaster	for	each	of	the	ALVAR	frames,	to	rotate	the
frames	returned	by	the	ALVAR	detector	node	such	that	the	z-axes	point	up,	which	is
necessary	in	order	to	feed	those	transforms	to	the	navigation	stack.	Although	it	would	be
much	more	elegant	and	scalable	to	create	these	relative	transformations	on	the	fly	as
ALVAR	markers	were	detected,	for	the	sake	of	brevity	and	simplicity,	and	because	our
environment	only	has	12	bins	with	ALVAR	markers,	we	will	opt	for	the	minimalist
solution	of	repeatedly	instantiating	static_transformation_publisher	nodes	to	create
the	transformations	we	need.

Example	14-14.	markers.launch
<launch>

		<arg	name="marker_size"	default="12.3"/>	

		<arg	name="max_new_marker_error"	default="0.2"/>

		<arg	name="max_track_error"	default="0.8"/>

		<arg	name="cam_image_topic"	default="/head_camera/rgb/image_raw"/>

		<arg	name="cam_info_topic"	default="/head_camera/rgb/camera_info"/>

		<arg	name="output_frame"	default="/base_link"/>

		<node	name="ar_track_alvar"	pkg="ar_track_alvar"

								type="individualMarkersNoKinect"	respawn="false"	output="screen"

								args="$(arg	marker_size)	$(arg	max_new_marker_error)	\

														$(arg	max_track_error)	$(arg	cam_image_topic)		\

														$(arg	cam_info_topic)	$(arg	output_frame)"	/>	

		<arg	name="tag_rot"	default="0	0	0	0	0	-1.57">	

		<arg	name="tag_trans"	default="0	-0.28	-0.1	0	0	0">

		

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_0_up"

								args="$(arg	tag_rot)	ar_marker_0	ar_0_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_1_up"

								args="$(arg	tag_rot)		ar_marker_1	ar_1_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_2_up"

								args="$(arg	tag_rot)	ar_marker_2	ar_2_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_3_up"

								args="$(arg	tag_rot)	ar_marker_3	ar_3_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_4_up"

								args="$(arg	tag_rot)	ar_marker_4	ar_4_up	100"/>



		<node	pkg="tf"	type="static_transform_publisher"	name="ar_5_up"

								args="$(arg	tag_rot)	ar_marker_5	ar_5_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_6_up"

								args="$(arg	tag_rot)	ar_marker_6	ar_6_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_7_up"

								args="$(arg	tag_rot)	ar_marker_7	ar_7_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_8_up"

								args="$(arg	tag_rot)	ar_marker_8	ar_8_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_9_up"

								args="$(arg	tag_rot)	ar_marker_9	ar_9_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_10_up"

								args="$(arg	tag_rot)	ar_marker_10	ar_10_up	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="ar_11_up"

								args="$(arg	tag_rot)	ar_marker_11	ar_11_up	100"/>

		

		<node	pkg="tf"	type="static_transform_publisher"	name="item_0"

								args="$(arg	tag_trans)	ar_0_up	item_0	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_1"

								args="$(arg	tag_trans)	ar_1_up	item_1	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_2"

								args="$(arg	tag_trans)	ar_2_up	item_2	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_3"

								args="$(arg	tag_trans)	ar_3_up	item_3	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_4"

								args="$(arg	tag_trans)	ar_4_up	item_4	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_5"

								args="$(arg	tag_trans)	ar_5_up	item_5	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_6"

								args="$(arg	tag_trans)	ar_6_up	item_6	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_7"

								args="$(arg	tag_trans)	ar_7_up	item_7	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_8"

								args="$(arg	tag_trans)	ar_8_up	item_8	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_9"

								args="$(arg	tag_trans)	ar_9_up	item_9	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_10"

								args="$(arg	tag_trans)	ar_10_up	item_10	100"/>

		<node	pkg="tf"	type="static_transform_publisher"	name="item_11"

								args="$(arg	tag_trans)	ar_11_up	item_11	100"/>

</launch>

The	<arg>	tags	define	configurable	parameters	for	this	launch	file	that	will	be	passed
to	ar_track_alvar.	Spelling	out	the	parameters	as	top-level	<arg>	tags	allows	them
to	be	overridden	if	other	roslaunch	files	include	this	file,	as	well	as	making	the	file	a
bit	easier	to	read.

The	<node>	tag	will	actually	spawn	ar_track_alvar	with	the	forwarded	parameters.

The	tag_rot	and	tag_trans	strings	will	be	passed	to	the	static_transform_​
pub⁠lisher	nodes;	they	are	consolidated	here	to	eliminate	redundant	typing	and
simplify	tweaking	the	values	as	needed.

The	following	sequence	of	12	static_transform_publisher	nodes	creates	relative
rotation	poses	for	the	detected	ALVAR	tag	pose(s).

Similarly,	the	following	sequence	of	static_transform_publisher	nodes	creates
relative	translation	poses	for	the	rotated	ALVAR	tag	pose(s).

The	ROS	transform	system	is	quite	helpful	in	cases	like	this:	we	can	express	our



manipulation	goal	as	a	static	transformation	from	the	frame	of	the	detected	ALVAR
marker.	The	transformation	chain	is	actually	quite	complex	in	this	case:	working
backward,	we	know	we	want	the	robot	to	grasp	(for	example)	28	cm	directly	in	front	and
10	cm	below	the	ALVAR	marker	of	the	bin	we	are	interested	in.	Since	we	have	seen	the
ALVAR	marker	in	the	camera	frame,	we	can	estimate	the	distance	and	orientation	of	the
ALVAR	marker	relative	to	the	camera.	From	there,	we	can	use	the	joint	encoders	of	the
head	and	torso	joints	of	the	Fetch	robot	to	derive	the	transformation	between	the	camera
and	the	base	of	the	robot,	which	we	can	then	feed	as	a	goal	state	to	the	arm’s	motion
planner.

When	debugging	these	complex	transformation	chains,	it	is	often	helpful	to	see	the
transformation	dependency	chain	in	graphical	form.	Fortunately,	the	tf	package	provides
a	utility	for	this,	called	view_frames.	At	any	time	when	a	ROS	system	is	running,	the
following	command	will	produce	a	PDF	rendering	of	the	transformation	tree:

user@hostname$	rosrun	tf	view_frames.py

Figure	14-9	shows	the	result	of	running	this	program	when	ALVAR	markers	were	being
detected	by	the	Fetch	robot.	It	is	far	too	complex	to	read	without	being	able	to	zoom	in
and	out,	but	suffice	it	to	say	that	the	fixed	(map)	frame	is	at	the	top	of	the	tree,	and	the
ALVAR	marker	frames	are	at	the	lower-left	of	the	tree!

TIP
The	view_frames.py	program	provided	by	tf	is	a	way	to	get	a	schematic	view	of	the	transform	tree	of	a
ROS	system.	Zooming	and	rotating	the	transform	tree	in	rviz	can	also	be	illuminating	and	helpful	for
rendering	transforms	coherently	with	spatial	sensor	data	and	other	intermediate	data	sets.	However,	for	just
making	sure	that	the	various	branches	of	the	transform	tree	are	properly	connected	to	each	other,	it’s	hard	to
beat	the	topological	view	of	view_frames.py.



Figure	14-9.	The	transformation	graph	of	the	scene	shown	in	Figure	14-10

In	many	situations,	however,	a	live,	interactive,	spatially	accurate	3D	view	of	the
transformation	graph	can	be	extremely	helpful	during	software	development	and
debugging.	As	we	have	shown	in	prior	chapters,	rviz	is	a	highly	configurable
visualization	system	for	ROS.	Among	the	many	other	data	types	that	it	can	handle,	rviz
can	be	configured	to	render	the	ROS	transformation	graph	in	real	time.	Figure	14-10
shows	a	screenshot	in	which	both	Gazebo	and	rviz	windows	are	visible,	showing	both	the
state	of	the	simulation	and	the	generated	camera	images,	the	laser	localization	cloud,	and
the	transformation	graph	showing	some	ALVAR	marker	detections.

Figure	14-10.	Viewing	the	Gazebo	(left)	and	rviz	(right)	windows	simultaneously	—	the	rendering	perspectives	are
approximately	equal



Using	the	transforms	generated	by	the	ALVAR	marker	detection	system,	we	can	command
the	robot	to	reach	out	and	grasp	an	item	that	is	in	a	known	position	relative	to	the	ALVAR
marker	at	the	back	of	the	bin.	Example	14-15	is	intended	to	run	once	the	robot	is	close
enough	to	a	bin	to	detect	its	ALVAR	marker,	after	which	it	will	generate	an	arm	motion
planner	goal	that	is	relative	to	the	bin,	not	the	robot.	Of	course,	actually	achieving	that
goal	is	up	to	the	navigation	system,	but	at	least	one	source	of	error	(localization	noise)	has
been	greatly	reduced.

In	Chapter	11,	we	introduced	MoveIt,	a	popular	motion	planning	framework	for	ROS-
based	robots.	Fortunately,	the	Fetch	robot	also	has	a	MoveIt	configuration	available,	and
we	can	call	it	in	exactly	the	same	way	as	we	did	with	the	Robonaut	2	in	Chapter	11.
Example	14-15	will	command	the	arm	to	grasp	the	item	in	front	of	the	robot	and	lift	it	up.
The	script	uses	ALVAR	marker	detections	to	generate	precise	motion	planner	targets	for
MoveIt.

Example	14-15.	pick_up_item.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	actionlib,	moveit_commander

from	control_msgs.msg	import	(GripperCommandAction,	GripperCommandGoal)

from	geometry_msgs.msg	import	*

from	tf.transformations	import	quaternion_from_euler

from	look_at_bin	import	look_at_bin

from	std_srvs.srv	import	Empty

from	moveit_msgs.msg	import	CollisionObject

from	moveit_python	import	PlanningSceneInterface

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('pick_up_item')

		args	=	rospy.myargv(argv	=	sys.argv)

		if	len(args)	!=	2:

				print("usage:	pick_up_item.py	BIN_NUMBER")

				sys.exit(1)

		item_frame	=	"item_%d"	%	int(args[1])

		rospy.wait_for_service("/clear_octomap")

		clear_octomap	=	rospy.ServiceProxy("/clear_octomap",	Empty)

		gripper	=	actionlib.SimpleActionClient("gripper_controller/gripper_action",

				GripperCommandAction)

		gripper.wait_for_server()	

		arm	=	moveit_commander.MoveGroupCommander("arm")	

		arm.allow_replanning(True)

		tf_listener	=	tf.TransformListener()	

		rate	=	rospy.Rate(10)

		gripper_goal	=	GripperCommandGoal()	

		gripper_goal.command.max_effort	=	10.0

		scene	=	PlanningSceneInterface("base_link")

		p	=	Pose()

		p.position.x	=	0.4	+	0.15

		p.position.y	=	-0.4

		p.position.z	=	0.7	+	0.15

		p.orientation	=	Quaternion(*quaternion_from_euler(0,	1,	1))

		arm.set_pose_target(p)	

		while	True:

				if	arm.go(True):

						break

				clear_octomap()

				scene.clear()



		look_at_bin()

		while	not	rospy.is_shutdown():

				rate.sleep()

				try:

						t	=	tf_listener.getLatestCommonTime('/base_link',	item_frame)	

						if	(rospy.Time.now()	-	t).to_sec()	>	0.2:

								rospy.sleep(0.1)

								continue

						(item_translation,	item_orientation)	=	\

								tf_listener.lookupTransform('/base_link',	item_frame,	t)	

				except(tf.Exception,	tf.LookupException,

											tf.ConnectivityException,	tf.ExtrapolationException):

						continue

				gripper_goal.command.position	=	0.15

				gripper.send_goal(gripper_goal)	

				gripper.wait_for_result(rospy.Duration(1.0))

				print	"item:	"	+	str(item_translation)

				scene.addCube(

								"item",	0.05,

								item_translation[0],	item_translation[1],	item_translation[2])

				p.position.x	=	item_translation[0]	-	0.01	-	0.06

				p.position.y	=	item_translation[1]

				p.position.z	=	item_translation[2]	+	0.04	+	0.14

				p.orientation	=	Quaternion(*quaternion_from_euler(0,	1.2,	0))

				arm.set_pose_target(p)

				arm.go(True)	

				#os.system("rosservice	call	clear_octomap")

				gripper_goal.command.position	=	0

				gripper.send_goal(gripper_goal)

				gripper.wait_for_result(rospy.Duration(2.0))

				scene.removeAttachedObject("item")

				clear_octomap()

				p.position.x	=	0.00

				p.position.y	=	-0.25

				p.position.z	=	0.75	-	.1

				p.orientation	=	Quaternion(*quaternion_from_euler(0,	-1.5,	-1.5))

				arm.set_pose_target(p)

				arm.go(True)	

				break	

Since	we	will	need	a	connection	to	the	gripper	action	server	later	to	grab	the	target
object,	there’s	no	sense	proceeding	further	until	it’s	up.	We’ll	wait	here	for	the
gripper	server	(and,	by	implication,	the	rest	of	the	Fetch	robot	controller)	to	start.

As	in	previous	chapters,	we’ll	use	MoveGroupCommander	as	a	Python	interface	to	the
MoveIt	motion	planning	system.

The	TransformListener	instance	is	how	we	will	subscribe	to	the	transformations
(both	static	and	dynamic)	being	broadcasted	by	the	rest	of	our	system,	including	the
robot	joint	states,	the	move_base	navigation	subsystem,	and	the	ALVAR	marker
subsystem.



We’ll	need	a	gripper	goal	object	later	on	to	send	to	the	gripper	action	server.	We’ll
initialize	it	here	to	save	space	later,	but	this	is	just	a	stylistic	choice.

This	pose	of	the	arm	is	chosen	so	that	the	gripper	is	out	of	the	way	of	the	depth
camera,	yet	still	in	a	“high”	posture	to	make	life	a	bit	easier	on	the	motion	planner.
Many	robots	have	postures	such	as	this,	sometimes	called	“ready,”	“pre-grasp,”	or
something	similar.

By	default,	the	tf	transform	system	will	“remember”	transforms	for	several	seconds.
However,	since	our	robot	is	moving	around,	we	want	to	ensure	that	we	only	use
transform	data	that	is	quite	recent.	We’re	using	200	ms	as	a	threshold	for	“recent
enough,”	but	that	threshold	will	be	application-dependent.

This	line	will	actually	extract	the	requested	transformation	from	the	tf	library’s	local
representation	of	the	transform	tree.

This	command	will	fully	open	the	gripper	of	the	Fetch	robot.

Here	is	where	the	magic	happens!	We	are	asking	MoveIt	to	plan	and	execute	a
collision-free	path	to	the	item’s	location.

This	command	instructs	the	arm	to	lift	up	the	object	and	bring	it	back	closer	to	the
robot’s	torso.

If	we’ve	made	it	this	far,	we	have	now	picked	up	the	object,	and	we	can	exit	the	outer
while	loop	that	was	originally	searching	for	detections	of	the	target	object.

This	bin-filled	stockroom	scene	is	considerably	more	complex	than	the	Chess-bot	world.
As	a	result,	we	will	use	the	built-in	MoveIt	collision	mapping	system.	This	uses	a	package
called	octomap	to	build	and	maintain	a	3D	volumetric	pixel	(voxel)	map	of	occupied	and
free	cells	in	the	workspace.	Voxel	maps	are	complex	structures,	but	fortunately,	the
behavior	is	transparent	from	the	MoveIt	user’s	perspective:	the	arm	simply	won’t	crash
into	things	that	the	depth	camera	can	see.	Figure	14-11	shows	a	typical	OctoMap
rendering	of	the	stockroom	scene	in	rviz.	The	“boxy”	appearance	is	OctoMap’s	data
structure:	the	world	is	represented	as	a	series	of	small	cubes.	The	task	of	MoveIt’s
planning	subsystem	is	to	generate	arm	paths	that	avoid	the	obstacles	represented	in	the
OctoMap	rendering,	while	still	arriving	at	the	goal	state.	This	task	is	processor-intensive,
which	is	why	motion	planning	often	takes	a	few	seconds	to	complete.

Note	that	activating	OctoMap’s	collision-avoidance	system	was	purely	a	configuration
task.	The	high-level	usage	of	MoveIt	remains	the	same;	it	just	takes	a	bit	longer	to	run
when	MoveIt	has	to	consider	all	of	those	obstacles.



The	amazing	thing	about	a	high-dimensional	motion	planning	system	like	MoveIt	is	that	it
gracefully	uses	all	the	joints	on	the	robot	to	achieve	the	commanded	gripper	positions	and
orientations.	As	discussed	previously,	the	robot’s	navigation	system	will	deliver	the	robot
in	front	of	the	bin,	but	with	a	typical	positioning	error	on	the	order	of	+/–	10	cm	due	to
map	discretization,	sensor	noise,	and	a	host	of	other	factors.	The	arm	motion	planner	can
use	all	of	the	joints	of	the	arm	(and	on	the	Fetch	robot,	the	torso-lift	joint)	to	deliver	the
gripper	to	a	precise	location	relative	to	the	fiducial	marker	on	the	back	of	the	bin.	So	long
as	the	arm	doesn’t	crash	into	anything,	the	motion	planner	is	free	to	be	“creative”	in	what
arm	postures	and	trajectories	it	uses.

Figure	14-11.	The	OctoMap	system	generates	3D	maps	of	the	robot’s	workspace,	for	use	by	the	arm	path	planner

In	practice,	the	planning	problem	is	so	difficult	that	algorithms	often	make	use	of	random
“guesses”	for	trajectories	and	iteratively	refine	them	during	the	planning	process.	This
means	that	there	will	be	considerable	variation	in	the	solutions	the	planner	comes	up	with.
We	asked	Stockroom-bot	to	pick	up	an	object	from	the	same	bin	several	times	and
assembled	the	grasp	configurations	into	several	renderings	in	Figure	14-12.	Although	the
gripper	was	always	in	the	same	orientation	relative	to	the	green	“target”	item,	the
positioning	of	the	rest	of	the	arm	and	torso	varied	considerably.



Figure	14-12.	Various	grasps	found	by	MoveIt	for	different	alignments	of	the	robot	with	respect	to	the	bin

Now	that	we	can	pick	up	the	item,	the	final	process	is	to	deliver	it	to	the	“customer
counter”	outside	the	stockroom.	This	process	requires	the	robot	to	navigate	to	a	position
behind	the	counter,	extend	the	arm,	open	the	gripper	to	drop	the	object,	and	then	retract
the	arm	and	return	to	the	stockroom.	These	steps	are	accomplished	by	the	script	in
Example	14-16,	which	implements	a	minimalist	approach	to	these	problems,	and
illustrated	in	Figure	14-13	and	Figure	14-14.

Example	14-16.	deliver_to_counter.py
#!/usr/bin/env	python

import	sys,	rospy,	tf,	actionlib,	moveit_commander

from	geometry_msgs.msg	import	*

from	move_base_msgs.msg	import	MoveBaseAction,	MoveBaseGoal

from	tf.transformations	import	quaternion_from_euler

from	control_msgs.msg	import	(GripperCommandAction,	GripperCommandGoal)

if	__name__	==	'__main__':

		moveit_commander.roscpp_initialize(sys.argv)

		rospy.init_node('deliver_to_counter')

		args	=	rospy.myargv(argv=sys.argv)

		gripper	=	actionlib.SimpleActionClient("gripper_controller/gripper_action",

				GripperCommandAction)

		gripper.wait_for_server()

		move_base	=	actionlib.SimpleActionClient('move_base',	MoveBaseAction)

		move_base.wait_for_server()

		goal	=	MoveBaseGoal()

		goal.target_pose.header.frame_id	=	'map'

		goal.target_pose.pose.position.x	=	4

		orient	=	Quaternion(*quaternion_from_euler(0,	0,	0))



		goal.target_pose.pose.orientation	=	orient

		move_base.send_goal(goal)

		move_base.wait_for_result()

		arm	=	moveit_commander.MoveGroupCommander("arm")

		arm.allow_replanning(True)

		p	=	Pose()

		p.position.x	=	0.9

		p.position.z	=	0.95

		p.orientation	=	Quaternion(*quaternion_from_euler(0,	0.5,	0))

		arm.set_pose_target(p)

		arm.go(True)

		gripper_goal	=	GripperCommandGoal()

		gripper_goal.command.max_effort	=	10.0

		gripper_goal.command.position	=	0.15

		gripper.send_goal(gripper_goal)

		gripper.wait_for_result(rospy.Duration(1.0))

		p.position.x	=	0.05

		p.position.y	=	-0.15

		p.position.z	=	0.75

		p.orientation	=	Quaternion(*quaternion_from_euler(0,	-1.5,	-1.5))

		arm.set_pose_target(p)

		arm.go(True)

		goal.target_pose.pose.position.x	=	0

		move_base.send_goal(goal)

		move_base.wait_for_result()

Figure	14-13.	The	Fetch	robot	reaching	out	to	deliver	an	item	onto	the	“customer	counter”	in	the	front	of	the	stockroom



Figure	14-14.	After	the	item-delivery	phase	is	complete,	the	Fetch	robot	returns	to	its	“ready	position”	in	the	center	of
the	bins



Summary
This	chapter	described	a	useful	robotic	application:	stockroom	automation.	Various	tools
in	the	ROS	and	Gazebo	ecosystem	were	utilized	to	develop	an	approach	to	the	problem.
First,	we	developed	a	Gazebo	model	of	the	environment.	Next,	we	mapped	this	simulated
environment	and	created	scripts	to	drive	the	robot	to	the	various	storage	bins.	Then,	we
developed	a	script	for	the	robot	to	use	visual	fiducial	markers	to	precisely	determine
locations	within	the	storage	bins	and	grasp	objects	from	known	locations	relative	to	the
bins.	The	final	code	example	showed	how	to	drive	the	robot	to	the	customer	counter,	drop
the	item,	and	return	the	robot	to	the	stockroom.

These	code	examples	provide	building	blocks	that	could	be	used	to	create	a	real-world
robot	application.	Of	course,	in	the	interest	of	simplifying	the	examples,	we	did	not
provide	robust	error	handling	or	a	notification	system	so	that	the	robot	can	“call	a	friend”
when	it	gets	stuck.	We	also	did	not	describe	a	user	interface.	All	of	these	additional
aspects	can	be	developed	with	existing	or	modified	ROS	tools:	the	Robot	Web	Tools
system	can	be	used	to	interface	user-facing	web	interfaces	to	ROS	systems,	for	example.
The	simulation	environment	and	building-block	scripts	developed	in	this	chapter	could
then	be	used	to	allow	user	experience	(UX)	designers	to	develop	the	user-facing	interface
purely	in	simulation,	which	would	permit	huge	time	savings	and	automated	interface
testing.

Up	until	this	point	in	the	book,	we	have	been	using	existing	robot	platforms,	such	as	the
Turtlebot,	Robonaut	2,	and	Fetch	robots.	However,	the	field	of	robotics	is	full	of	custom
hardware!	Fortunately,	ROS	was	designed	with	custom	hardware	in	mind,	since	it	had
multiple	evolving	robots	in	its	user	base	from	day	one.	In	the	next	few	chapters,	we	will
demonstrate	how	to	add	custom	robots	into	various	components	of	the	ROS	ecosystem.



Part	IV.	Bringing	Your	Own	Stuff	into
ROS





Chapter	15.	Your	Own	Sensors	and
Actuators

Up	until	now,	we’ve	looked	at	how	you	can	use	ROS	to	interact	with	existing	sensor	and
actuator	hardware.	Although	ROS	covers	a	wide	variety	of	popular	sensors	and	actuators,
it	doesn’t	cover	all	of	them.	As	new	hardware	becomes	available,	we’ll	have	to	bring	it
into	ROS,	so	that	it	can	be	used	by	the	community.

In	this	chapter,	we’ll	see	how	you	can	integrate	new	sensors	and	actuators	into	the	ROS
ecosystem.	This	process	is,	for	the	most	part,	relatively	painless;	it	involves	writing	ROS
wrappers	around	the	APIs	that	you’re	already	using	to	access	these	devices.	We’ll	start	off
with	adding	your	own	sensors.



Adding	Your	Own	Sensors
How	do	you	add	a	new	sensor	to	ROS?	We’re	going	to	assume	that	the	sensor	already	has
a	Python	API	that	you	can	call	to	get	measurements	from	it,	and	that	you	know	how	to	use
this	API.	We’re	also	going	to	assume	that	everything	is	wired	up	correctly	and	that	you’ve
been	able	to	use	this	API	to	successfully	read	the	sensor.	Although	this	seems	like
common	sense,	you	should	always	verify	that	things	are	working	as	expected	before	you
start	to	wrap	up	a	sensor	in	ROS.	If	you	know	that	the	sensor	is	working,	then	anything
that	goes	wrong	will	be	a	problem	with	the	ROS	wrapper,	which	will	make	things	easier	to
debug.



A	(Fake)	Sensor
For	this	chapter,	we’re	going	to	use	a	fake	sensor	(called	FakeSensor)	with	a	simple	API.
This	Python	class	is	going	to	simulate	a	real	sensor,	allowing	us	to	show	you	how	to	wrap
up	a	sensor	in	ROS	without	you	having	to	buy	any	additional	hardware.	Although	it’s	not
a	real	sensor,	it	has	the	types	of	API	commonly	found	on	real	sensors.

Our	fake	sensor	brings	up	a	simple	graphical	interface	using	the	PySide	graphical	library
(which	you	need	to	have	installed	on	your	computer),	shown	in	Figure	15-1	with	a	dial	in
it.	Turning	the	dial	causes	the	sensor	to	output	different	measurements	(integers	from	0	to
99).

Figure	15-1.	The	graphical	interface	for	our	fake	sensor

The	measurements	from	this	sensor	can	be	accessed	in	two	ways:	by	explicitly	calling	the
class’s	value()	function,	or	by	registering	a	callback	that	gets	called	whenever	the	values
change.	We’ll	see	some	code	for	both	of	these	shortly.



Designing	the	ROS	Wrapper
Before	we	look	at	how	to	implement	a	ROS	wrapper	for	our	sensor,	we	need	to	make	a
couple	of	design	decisions.	The	first	is	whether	the	ROS	wrapper	should	stream	the	values
of	the	sensor	over	a	topic	or	only	give	measurements	when	asked,	using	a	service	or	action
call.	This	really	depends	on	how	you’re	going	to	use	the	data	from	the	sensor,	so	we’re
going	to	cover	both	approaches	here.

The	second	decision	to	make	is	how	you’re	going	to	access	data	from	the	sensor.	Some
sensors	will	have	only	one	way	to	get	data	from	them,	but	some	(like	our	FakeSensor)
will	have	multiple	ways.	Again,	you	should	make	this	decision	based	on	how	you’re	going
to	use	the	sensor	and	how	costly	it	is	to	make	measurements	using	your	sensor’s	API.
Sometimes	it	may	only	make	sense	to	implement	one	option,	but	in	other	cases	you	may
want	to	implement	more	than	one.

Finally,	you	need	to	decide	what	type	of	ROS	messages	your	wrapper	will	produce.	As	a
general	rule,	you	should	try	to	use	message	types	that	are	already	defined	in	ROS,	so	that
your	newly	wrapped	sensor	is	as	broadly	useful	as	possible.	For	our	FakeSensor,	we’ve
decided	to	interpret	the	measurements	as	angles	and	to	use	a	Quaternion	from	the
geometry_msgs	package.

Why	not	have	the	wrapper	just	provide	angles	in	radians	and	use	Float32	messages	from
std_msgs?	This	would	be	simpler,	since	we	wouldn’t	have	to	convert	the	output	of	the
sensor	(an	integer	from	0	to	99)	into	a	quaternion.	We	could	certainly	do	that,	but	it	would
be	less	useful,	in	the	long	run,	than	using	a	quaternion.	Angles	can	be	represented	in	a
variety	of	ways,	and	ROS	has	settled	on	quaternions	as	the	standard.	If	we	have	a	sensor
that	returns	angles,	we	should	follow	the	standard	and	stick	to	quaternions,	even	if	it’s
(slightly)	more	work	or	we	don’t	think	it’s	necessarily	the	right	decision.	The	more	of	the
ROS	ecosystem	(including	code	that	we	write	ourselves)	that	sticks	to	the	accepted
conventions,	the	more	interoperable	everything	will	be,	and	the	more	likely	it	is	that	other
people	will	use	our	code.

http://docs.ros.org/api/geometry_msgs/html/msg/Quaternion.html
http://wiki.ros.org/geometry_msgs?distro=indigo
http://docs.ros.org/api/std_msgs/html/msg/Float32.html
http://wiki.ros.org/std_msgs?distro=indigo


Design	1:	Periodic	Measurements	over	a	Topic
The	first	wrapper	that	we	will	look	at	will	send	out	measurements	periodically	over	a
topic.	Example	15-1	shows	the	code	that	does	this.

Example	15-1.	topic_sensor.py
#!/usr/bin/env	python

from	math	import	pi

from	fake_sensor	import	FakeSensor		

import	rospy

import	tf

from	geometry_msgs.msg	import	Quaternion		

def	make_quaternion(angle):		

				q	=	tf.transformations.quaternion_from_euler(0,	0,	angle)

				return	Quaternion(*q)

if	__name__	==	'__main__':

				sensor	=	FakeSensor()		

				rospy.init_node('fake_sensor')

				pub	=	rospy.Publisher('angle',	Quaternion,	queue_size=10)

				rate	=	rospy.Rate(10.0)		

				while	not	rospy.is_shutdown():		

								angle	=	sensor.value()	*	2	*	pi	/	100.0

								q	=	make_quaternion(angle)

								pub.publish(q)

								rate.sleep()

Import	the	code	to	access	the	sensor	measurements.

Since	we’re	using	a	Quaternion,	we	need	to	import	that,	too.

A	convenience	function	to	convert	from	yaw	(in	radians)	to	a	Quaternion.

Set	up	access	to	the	sensor.

Set	a	publishing	rate.

Loop	until	the	node	is	shut	down.

The	interesting	part	of	the	core	is	the	loop	where	we	read	the	sensor,	translate	the	returned
measurement	into	something	useful,	and	then	publish	it	out	on	a	topic.	In	this	example,	we
take	the	measurement,	an	integer	between	0	and	99,	and	turn	that	into	an	angle	in	radians.
We	then	take	that	angle	—	which	we’re	going	to	interpret	as	a	rotation	around	the	z-axis	(a



yaw)	—	and	turn	that	into	a	Quaternion.	We’ve	encapsulated	this	translation	into	a	helper
function	to	make	things	cleaner.	Then,	we	publish	the	calculated	Quaternion	on	the	topic
and	sleep	for	a	while.

Something	new	here	is	the	quaternion	translation	code.	Quaternions	are	a	representation	of
rotation	that	uses	four	real-valued	numbers.	Intuitively,	these	correspond	to	a	vector	(three
values)	and	a	rotation	around	that	vector	(fourth	value).	There	are	several	ways	to
represent	quaternions,	and	it’s	always	best	to	use	the	built-in	functions	in	ROS	to	do	the
translation.	If	you	do	it	by	hand,	you	might	get	the	wrong	representation	by	accident	and
create	a	bug	that’s	hard	to	find.

We	can	verify	that	the	node	is	publishing	what	we	expect	it	to	using	rostopic:

user@hostname$	rostopic	list

/angle

/rosout

/rosout_agg

user@hostname$	rostopic	hz	angle

average	rate:	9.999

	 min:	0.100s	max:	0.100s	std	dev:	0.00006s	window:	10

average	rate:	10.000

	 min:	0.100s	max:	0.100s	std	dev:	0.00005s	window:	20

average	rate:	10.000

	 min:	0.100s	max:	0.100s	std	dev:	0.00007s	window:	30

average	rate:	10.000

	 min:	0.100s	max:	0.100s	std	dev:	0.00006s	window:	40

average	rate:	10.000

	 min:	0.100s	max:	0.100s	std	dev:	0.00007s	window:	46

user@hostname$	rostopic	echo	-n	1	angle

x:	0.0

y:	0.0

z:	0.0

w:	1.0

---

That	looks	about	right.	We	see	the	angle	topic	with	rostopic	list,	and	it	seems	to	be
publishing	at	the	right	rate,	according	to	rostopic	hz.	Finally,	rostopic	echo	shows	that
the	data	is	reasonable.	Note	that	we	stopped	rostopic	hz	with	a	Ctrl-C;	otherwise,	it
would	run	forever.

So,	it’s	as	simple	as	that:	read	the	sensor,	translate	the	readings	into	something	useful,
publish	them	out,	wait	a	bit,	and	repeat.	Now,	we’re	going	to	look	at	what	to	do	for
sensors	that	stream	their	information	to	you.

TIP
When	publishing	data	from	a	sensor,	it’s	often	a	good	idea	to	use	a	ROS	message	type	with	a	Header,	so
that	you	can	add	a	timestamp	to	the	data	that	you	send.	While	this	isn’t	strictly	necessary,	it	lets	you
coordinate	data	from	multiple	sensors	in	time	(by	correlating	their	timestamps	using	the	message_filters
package).

http://wiki.ros.org/message_filters?distro=indigo


Design	2:	Streaming	Measurements	over	a	Topic
Now,	let’s	assume	that	the	sensor	returns	measurements	automatically,	in	a	stream,	using	a
callback	mechanism.	The	ROS	wrapper	code	in	this	case	is	very	similar	to	that	shown	in
Example	15-1,	except	that	we	put	all	of	the	translation	and	publishing	code	in	the	callback
that	we	pass	to	the	sensor.	Example	15-2	shows	the	details.

Example	15-2.	topic_sensor2.py
#!/usr/bin/env	python

from	math	import	pi

from	fake_sensor	import	FakeSensor

import	rospy

import	tf

from	geometry_msgs.msg	import	Quaternion

def	make_quaternion(angle):

				q	=	tf.transformations.quaternion_from_euler(0,	0,	angle)

				return	Quaternion(*q)

def	publish_value(value):

				angle	=	value	*	2	*	pi	/	100.0

				q	=	make_quaternion(angle)

				pub.publish(q)

if	__name__	==	'__main__':

				rospy.init_node('fake_sensor')

				pub	=	rospy.Publisher('angle',	Quaternion,	queue_size=10)

				sensor	=	FakeSensor()

				sensor.register_callback(publish_value)

The	key	difference	in	this	code	is	that	we	register	a	callback	function,	publish_value()
with	the	sensor	handler	to	deal	with	the	measurements	returned	by	the	sensor.	This	is	a
common	design	pattern	with	sensors	and	one	that	is	widely	used	in	ROS.	In	the	callback
function,	which	is	passed	the	measurement	value,	we	again	do	the	translation,	build	a
Quaternion,	and	publish	it	out	to	the	topic.	In	this	case,	we	will	only	publish	at	the	rate
the	sensor	produces	measurements.	If	this	only	happens	infrequently,	and	getting	an	old
measurement	is	better	than	waiting	(potentially	a	long	time)	for	a	new	one,	then	you	might
consider	making	this	a	latched	topic	(see	“Latched	Topics”).



Design	3:	Streaming	Measurements	Published	at	a	Fixed	Rate
Suppose	your	sensor	API	uses	callbacks	and	delivers	measurements	every	now	and	then,
but	you	want	to	publish	these	measurements	at	a	fixed	rate.	This	is	a	combination	of	the
first	two	designs	and	is	illustrated	by	Example	15-3.

Example	15-3.	topic_sensor3.py
#!/usr/bin/env	python

from	math	import	pi

from	threading	import	Lock

from	fake_sensor	import	FakeSensor

import	rospy

import	tf

from	geometry_msgs.msg	import	Quaternion

def	make_quaternion(angle):

				q	=	tf.transformations.quaternion_from_euler(0,	0,	angle)

				return	Quaternion(*q)

def	save_value(value):

				with	lock:	

								angle	=	value	*	2	*	pi	/	100.0	

if	__name__	==	'__main__':

				lock	=	Lock()	

				sensor	=	FakeSensor()

				sensor.register_callback(save_value)

				rospy.init_node('fake_sensor')

				pub	=	rospy.Publisher('angle',	Quaternion,	queue_size=10)

				angle	=	None	

				rate	=	rospy.Rate(10.0)

				while	not	rospy.is_shutdown():

								with	lock:

												if	angle:	

																q	=	make_quaternion(angle)

																pub.publish(q)

								rate.sleep()

Get	the	lock	on	angle.

Update	the	value	of	angle,	based	on	the	sensor	measurement.

Create	a	lock	for	angle,	to	prevent	simultaneous	access.

Initially	set	angle	to	None.	This	will	be	overwritten	in	the	first	execution	of	the
callback	function.



If	the	callback	has	assigned	a	value	to	angle,	this	will	evaluate;	then	the	if	clause
will	evaluate	True,	and	a	new	message	will	be	published	on	the	topic.	If	the	callback
hasn’t	run	yet,	no	message	will	be	published.

This	code	contains	both	a	callback,	to	deal	with	the	sensor	measurements,	and	a
publishing	loop,	to	deal	with	publishing	messages	on	the	topic.	We	have	also	added	a
concurrency	lock,	to	avoid	the	angle	variable	being	accessed	in	the	callback	and	in	the
publishing	loop	at	the	same	time.	The	callback	function	simply	stores	the	current	value	of
the	angle,	based	on	the	sensor	measurement.	This	value	is	published	periodically	by	the
publishing	loop.



Design	4:	Sensor	Measurements	on	Demand
The	final	design	we	will	look	at	deals	with	the	case	where	you	only	want	to	report	a	sensor
measurement	on	demand,	when	some	node	asks	for	it.	If	the	process	of	getting	a
measurement	from	the	sensor	is	quick,	then	you	should	use	a	service	call	for	this.	If	it	is
slower,	then	you	should	probably	use	an	action	call.	We	will	illustrate	the	basic	approach
with	a	service	call;	the	action	interface	will	be	structured	similarly.

Our	service	call	will	take	no	arguments,	and	return	a	Quaternion.	Example	15-4	shows
the	service-definition	file.

Example	15-4.	FakeSensor.srv
std_msgs/Empty

---

geometry_msgs/Quaternion	quaternion

We	could	omit	the	std_msgs/Empty	definition,	and	ROS	would	interpret	this	as	defining	a
service	call	with	no	inputs.	However,	we’ve	chosen	to	use	the	Empty	message	type	here,	to
explicitly	show	that	we’re	not	expecting	any	inputs.

Example	15-5	shows	the	code	for	a	service-based	ROS	wrapper	for	our	sensor.	The
structure	of	a	service	node	should	be	familiar	from	the	discussion	in	Chapter	4.

Example	15-5.	service_sensor.py
#!/usr/bin/env	python

from	math	import	pi

from	fake_sensor	import	FakeSensor

import	rospy

import	tf

from	geometry_msgs.msg	import	Quaternion

from	stuff.srv	import	FakeSensor,FakeSensorResponse

def	make_quaternion(angle):

				q	=	tf.transformations.quaternion_from_euler(0,	0,	angle)

				return	Quaternion(*q)

def	callback(request):		

				angle	=	sensor.value()	*	2	*	pi	/	100.0

				q	=	make_quaternion(angle)

				return	FakeSensorResponse(q)

if	__name__	==	'__main__':

				sensor	=	FakeSensor()

				rospy.init_node('fake_sensor')

				service	=	rospy.Service('angle',	FakeSensor,	callback)	

Callback	function	to	deal	with	the	service	request.

Set	up	the	service	handler.

If	your	sensor	returns	measurements	through	a	callback	mechanism,	then	you’ll	have	to



store	these	values	using	a	method	similar	to	the	one	in	“Design	3:	Streaming
Measurements	Published	at	a	Fixed	Rate”,	and	then	return	them	in	the	service	callback.



Adding	Your	Own	Actuators
Now	that	we’ve	seen	how	to	add	your	own	sensors	to	ROS,	let’s	take	a	look	at	how	you
can	add	in	your	own	actuators.	The	general	approach	is	going	to	be	similar:	decide	how
you’re	going	to	send	commands	to	the	actuator,	decide	on	what	data	types	to	use,	and	then
encapsulate	the	existing	API	in	a	ROS	wrapper.



A	(Fake)	Actuator
Just	like	in	the	sensor	example,	we’re	going	to	use	a	fake	actuator	(called	FakeActuator)
to	illustrate	how	you	might	write	a	ROS	wrapper	for	a	real	actuator.	As	before,	our	fake
actuator,	shown	in	Figure	15-2,	brings	up	a	PySide	GUI.	The	elements	of	this	GUI
represent	a	light	(top),	a	volume	control	(middle),	and	a	rotational	element	(bottom).
Think	of	it	as	representing	a	searchlight	and	speaker	on	a	swiveling	base.	Although	it’s	not
a	real	actuator,	it	does	have	some	of	the	properties	that	you	might	see	in	a	real	actuator
API.	You	can	toggle	the	light	on	and	off	with	a	call	to	the	toggle_light()	function,	you
can	set	a	volume	with	the	set_volume()	function,	and	you	can	set	a	rotational	position
with	the	set_position()	function.	Each	of	these	three	parts	of	the	actuator	also	has	a
function	that	tells	you	what	state	it’s	currently	in	(light_on(),	volume(),	and	position(),
respectively).	More	importantly	for	the	rest	of	this	section,	these	three	parts	of	the	actuator
are	representative	of	the	types	of	interactions	we	have	with	real	actuators.

Figure	15-2.	The	graphical	interface	for	our	fake	actuator



Designing	the	ROS	Wrapper
When	designing	the	ROS	wrapper,	there	are	two	main	things	to	consider:	what	type	of
interaction	to	have	with	the	actuator	hardware	and	what	data	types	you	should	be	using.
For	our	fake	sensor,	there	are	three	parts	to	the	device:	the	volume	control,	the	light,	and
the	rotational	position.	We’ll	deal	with	each	of	these	separately.

The	type	of	interaction	that	you	have	with	the	actuator	will	determine	the	ROS	mechanism
that	you	use	to	control	it.	If	you’re	going	to	be	constantly	sending	commands	to	the
hardware,	then	you	should	use	a	topic.	If	you	are	occasionally	sending	commands	that	get
implemented	quickly	by	the	hardware,	then	you	should	use	a	service	call.	Finally,	if	you’re
occasionally	sending	commands	that	take	a	long	time	(or	a	highly	variable	amount	of
time)	to	complete,	then	you	should	use	an	action.	We’ll	expand	on	this	in	the	following
sections.	For	now,	though,	the	code	for	the	ROS	wrapper	around	our	fake	actuator	is
shown	in	Example	15-6.

Example	15-6.	actuator.py
#!/usr/bin/env	python

from	fake_actuator	import	FakeActuator

import	rospy

import	actionlib

from	std_msgs.msg	import	Float32

from	sensors.srv	import	Light,LightResponse

from	sensors.msg	import	RotationAction,RotationFeedback,RotationResult

def	volume_callback(msg):

				actuator.set_volume(min(100,	max(0,	int(msg.data	*	100))))

def	light_callback(request):

				actuator.toggle_light(request.on)

				return	LightResponse(actuator.light_on())

def	rotation_callback(goal):

				feedback	=	RotationFeedback()

				result	=	RotationResult()

				actuator.set_position(goal.orientation)

				success	=	True

				rate	=	rospy.Rate(10)

				while	fabs(goal.orientation	-	actuator.position())	>	0.01:

								if	a.is_preempt_requested():

												success	=	False

												break;

								feedback.current_orientation	=	actuator.position()

								a.publish_feedback(feedback)

								rate.sleep()

				result.final_orientation	=	actuator.position()

				if	success:

								a.set_succeeded(result)

				else:

								a.set_preempted(result)

if	__name__	==	'__main__':

				actuator	=	FakeActuator()	



				#	Initialize	the	node

				rospy.init_node('fake')

				#	Topic	for	the	volume

				t	=	rospy.Subscriber('fake/volume',	Float32,	volume_callback)	

				#	Service	for	the	light

				s	=	rospy.Service('fake/light',	Light,	light_callback)	

				#	Action	for	the	position

				a	=	actionlib.SimpleActionServer('fake/position',	RotationAction,	

																																					execute_cb=rotation_callback,

																																					auto_start=False)

				a.start()

				#	Start	everything

				rospy.spin()

Initialize	the	actuator,	and	do	any	setup	you	need	to	make	it	work.

Subscribe	to	a	topic	for	volume	commands.

Announce	a	service	to	control	the	light.

Announce	an	action	to	control	the	rotational	position.

The	import	statements	deserve	a	little	extra	attention:

#!/usr/bin/env	python

from	fake_actuator	import	FakeActuator

import	rospy

import	actionlib

from	std_msgs.msg	import	Float32

from	sensors.srv	import	Light,LightResponse

from	sensors.msg	import	RotationAction,RotationFeedback,RotationResult

The	first	statement	imports	the	previously	defined	service	definitions	for	the	light,	Light
and	LightResponse,	which	we	discussed.	The	second	statement	pulls	in	the	definitions	for
all	of	the	messages	related	to	the	rotation	action	interface,	also	discussed	previously.	We
need	all	three	to	make	the	action	work.



Design	1:	Continuous	Actuation
We	can	treat	the	volume	control	on	our	fake	actuator	as	an	example	of	continuous
actuation;	we’re	going	to	constantly	send	it	volumes	—	floating-point	numbers	in	the
range	0	to	1	—	and	it’s	going	to	set	the	volume	appropriately.	The	commands	are	one-
way:	we’re	going	to	set	the	volume,	but	there’s	no	feedback	on	what	the	current	volume	is.
If	we	wanted	to	confirm	that	the	volume	actually	did	get	set,	then	we	would	use	a	service
call,	similar	to	the	example	in	the	next	section.	However,	for	now,	we’re	going	to	assume
that	the	volume	will	always	get	set	correctly.	We’re	also	implicitly	assuming	that	setting
the	volume	is	something	that	happens	quickly	and	is	not	buffered	by	the	actuator;	that	is,
that	the	device	is	capable	of	responding	to	a	volume-setting	request	before	the	next	request
comes	in.	If	this	isn’t	the	case,	then	one	of	the	other	designs	might	be	more	appropriate.

So,	we’re	going	to	continually	send	volume	commands	to	the	device,	and	the	volume	is
going	to	get	set	quickly.	In	this	case,	a	topic	is	a	good	choice	for	the	communication
mechanism.	Since	we’re	going	to	be	sending	floating-point	numbers	corresponding	to	the
fraction	of	total	volume	to	set,	we’ve	chosen	to	use	Float32	for	the	message	type.	We
could	have	defined	our	own	unique	message	type	for	this:	say,	one	called	Volume	and
containing	a	single-floating	point	number.	However,	using	a	more	generic	type	makes	it
easier	to	use	the	topic	interface,	since	we	don’t	have	to	convert	from	a	Float32	published
by	other	nodes	into	the	new	data	type.

We’ve	chosen	to	name	the	topic	fake/volume.	It’s	a	common	practice,	when	a	single
device	has	a	number	of	different	interfaces,	to	use	a	namespace	like	this.	All	interfaces	for
the	device	start	with	fake/	and	end	with	a	descriptive	name.

As	you	might	imagine,	the	code	for	the	callback	connected	with	this	topic,	shown	in
Example	15-7,	is	quite	simple.	All	we	do	is	call	the	volume-setting	function	with	the	value
from	the	message.	In	this	case,	we’re	multiplying	the	value	by	100,	since	the	device
expects	an	integer	from	0	to	100	and	the	topic	delivers	a	floating-point	number	between	1
and	0.	We’re	also	capping	the	range	of	the	value	we	pass	on	to	be	between	0	and	100,	so
that	the	volume	stays	within	the	bounds	expected	by	the	device.	The	callback	is	a	natural
place	to	do	this	sort	of	conversion	and	bounds	checking.	It’s	also	a	good	place	to	enforce
software	limits	on	your	hardware	devices.	For	example,	if	you	never	wanted	the	volume
on	the	device	to	go	above	80%	of	maximum,	this	would	be	the	place	to	make	that	happen.

Example	15-7.	The	topic	callback	for	the	volume	control
def	volume_callback(msg):

				actuator.set_volume(min(100,	max(0,	int(msg.data	*	100))))

The	set_volume()	call	in	Example	15-7	deserves	some	extra	explanation,	because	it’s	a
bit	gnarly.	We’re	taking	the	value	in	the	message	(which	is	a	float	between	0	and	1),
scaling	it	up	to	a	number	between	0	and	100,	then	converting	it	to	an	integer	with	the
int()	function.	We’re	then	clipping	it	to	the	range	0	to	100,	just	case	we	got	bad	data	in
the	message.	The	max()	function	returns	0	if	the	scaled	value	is	less	than	zero,	and	the
value	itself	otherwise.	This	establishes	a	lower	bound.	This	value	then	goes	through	the



min()	function,	which	returns	100	or	the	value,	whichever	is	lower.	These	two	steps
ensure	that	the	resulting	value	passed	to	set_volume()	is	an	integer	between	0	and	100,
inclusive.



Design	2:	Infrequent,	Instantaneous	Actuation
ROS	networking	is	“best	effort,”	and	there’s	always	a	(small)	chance	that	a	message	sent
over	a	topic	won’t	get	received	and	acted	upon.	ROS	topics	are	built	on	TCP	sockets,
which	have	guaranteed	delivery,	but	a	message	can	still	be	lost	if	the	subscriber’s	message
buffer	overflows.	The	chances	of	this	are	small,	at	least	for	well-designed	code,	but	it	can
happen.	If	you’re	sending	frequent	commands,	and	one	of	them	doesn’t	make	it	through,
then	the	assumption	is	that	it	isn’t	the	end	of	the	world;	as	long	as	packets	are	only
dropped	occasionally,	they’re	being	sent	often	enough	that	it	won’t	cause	any	serious
problems.

However,	if	you’re	only	sending	commands	occasionally,	losing	one	of	them	is	a	bigger
deal,	and	you’d	like	to	be	sure	that	they	all	get	through.	In	this	case,	the	right	thing	to	do	is
to	use	a	service	call.	This	allows	you	to	issue	a	command	to	the	actuator	and	wait	until	you
get	an	acknowledgment	back,	often	containing	information	on	whether	or	not	the
command	was	successful.

The	light	on	our	fake	sensor	is	a	good	example	of	the	sort	of	actuator	that	should	use	a
service-call	interface.	Turning	the	light	on	or	off	is	a	discrete	operation	that,	presumably,
we	won’t	be	doing	at	a	high	frequency.	The	code	for	the	service	callback,	shown	in
Example	15-8,	is	almost	as	simple	as	the	code	for	the	topic	callback	in	the	previous
section.

Example	15-8.	The	service	callback	for	the	volume	control
def	light_callback(request):

				actuator.toggle_light(request.on)

				return	LightResponse(actuator.light_on())

All	that	the	code	does	is	pass	on	the	command	(a	Boolean	representing	the	desired	state	of
the	light)	to	the	device	API.	It	then	returns	a	Boolean	with	the	current	state	of	the	light.
The	node	calling	the	service	can	compare	the	command	to	the	return	value,	and	verify	that
everything	worked	as	expected.	The	service	definition	is	shown	in	Example	15-9;	it’s
simply	a	single	Boolean	parameter	to	the	service	call,	representing	the	desired	state	of	the
light,	and	another	Boolean	for	the	return	value,	representing	the	actual	state	of	the	light
after	the	call.

Example	15-9.	Light.srv
bool	on

---

bool	status

Service	calls	are	synchronous;	the	calling	node	has	to	wait	for	a	response	from	the	server.
This	is	fine	if	the	command	doesn’t	take	long	to	perform	or	if	the	calling	node	can	afford
to	wait.	However,	it	can	cause	problems	if	the	command	takes	a	long	time	to	execute	and
you	don’t	want	to	wait	for	it	to	finish.	In	this	case,	you	should	use	an	action	interface	for
your	actuator.



Design	3:	Infrequent,	Extended	Actuation
As	we	learned	in	Chapter	5,	action	interfaces	are	similar	to	service	interfaces	in	that	they
allow	the	calling	node	to	be	sure	that	the	command	was	received	and	acted	upon.
However,	since	actions	are	asynchronous,	they	don’t	require	the	calling	node	to	wait	for
the	command	to	finish.	This	is	ideal	for	actions	that	can	take	a	long	time.	A	great	example
of	this	is	the	navigation	stack:	we	don’t	want	to	have	to	wait	until	the	robot	navigates	to	a
goal	location,	but	we	do	want	to	know	when	it	gets	there.

In	our	fake	actuator,	the	set_position()	function	sets	a	desired	rotational	position.
However,	the	actuator	has	a	limited	rotational	speed	and	cannot	instantaneously	move
from	one	position	to	another.	This	makes	it	a	good	candidate	for	an	action	interface.	The
code	for	the	action	callback	is	shown	in	Example	15-10,	and	the	action	definition	is	shown
in	Example	15-11.

Example	15-10.	The	action	callback	for	the	volume	control
def	rotation_callback(goal):

				feedback	=	RotationFeedback()

				result	=	RotationResult()

				actuator.set_position(goal.orientation)

				success	=	True

				rate	=	rospy.Rate(10)

				while	fabs(goal.orientation	-	actuator.position())	>	0.01:

								if	a.is_preempt_requested():

												success	=	False

												break;

								feedback.current_orientation	=	actuator.position()

								a.publish_feedback(feedback)

								rate.sleep()

				result.final_orientation	=	actuator.position()

				if	success:

								a.set_succeeded(result)

				else:

								a.set_preempted(result)

Example	15-11.	Rotation.action
float32	orientation

---

float32	final_orientation

---

float32	current_orientation

We	begin	by	allocating	a	RotationFeedback	and	a	RotationResult	to	return	incremental
feedback	on	progress	and	the	final	position	of	the	actuator,	respectively.	Both	of	these	are
floating-point	numbers	and	correspond	to	positions	of	the	actuator.

Next,	we	pass	the	requested	position	to	the	device	API,	which	starts	the	actuator	turning.
Then,	we	loop	until	the	actual	position	of	the	actuator	is	close	to	the	requested	position.
On	each	pass	through	this	loop,	we	check	to	see	if	the	action	has	been	preempted	(and
break	the	loop	if	it	has)	and	send	back	the	current	position	as	periodic	feedback	to	the
calling	node.	We	use	a	Rate	instance	to	loop	at	10	Hz.	Finally,	if	the	action	was	not
preempted,	we	set	its	status	to	succeeded	and	return	the	final	position	of	the	actuator.

This	allows	the	calling	node	to	issue	a	rotation	command	and	not	have	to	wait	until	it



completes.	It	still	gets	periodic	updates	and	notification	of	success	or	failure	through	the
use	of	callbacks.



Summary
In	this	chapter,	we’ve	seen	how	to	take	a	new	sensor	or	actuator	and	write	a	wrapper	for	it
to	bring	it	into	the	ROS	ecosystem.	For	sensors,	once	you	decide	on	the	message	type,	the
delivery	mechanism	(topic,	service,	or	action),	and	how	to	access	measurements	from	the
sensor,	writing	a	wrapper	is	quite	straightforward.	For	actuators,	the	mechanism	is
(largely)	determined	by	how	you	are	going	to	interact	with	the	device.	Topics	are	often	a
good	choice	if	you’re	going	to	be	constantly	sending	commands	and	can	afford	to	lose	a
message	occasionally.	If	you	are	going	to	send	commands	less	frequently,	or	really	need	to
make	sure	the	commands	were	acted	on,	you	should	use	a	service	(for	things	that	happen
quickly)	or	actions	(for	things	that	happen	more	slowly).

Once	you	bring	something	new	into	ROS,	the	next	step	is	to	tell	people	about	it.	As	we’ll
see	in	Chapter	22,	one	of	the	strongest	parts	of	ROS	is	the	community	of	people
contributing	to	it.	If	you	bring	some	new	hardware	into	the	ecosystem,	you	should	think
about	hosting	the	code	in	a	public	place,	writing	up	some	documentation	and	a	wiki	page,
and	telling	the	community	about	it	(see	Chapter	22	for	details	on	how	and	where	to	do
this).	This	will	let	others	benefit	from	your	hard	work	and	will	make	ROS	even	stronger
and	better	than	it	already	is.

Now	that	we’ve	seen	how	we	can	add	individual	new	sensors	and	actuators	into	ROS,	the
next	few	chapters	look	at	how	you	can	bring	whole	new	robot	platforms	into	the
ecosystem.





Chapter	16.	Your	Own	Mobile	Robot

One	of	the	most	rewarding	(if	occasionally	frustrating)	robotics	projects	you	can
undertake	is	to	build	your	own	robot.	There	are	lots	of	great	robots	out	there,	but
sometimes	there	isn’t	one	that	suits	your	specific	needs.	Or	perhaps	you	just	want	to	have
the	experience	of	designing	and	building	a	robot	yourself.	Whatever	the	reason,	once
you’ve	built	your	amazing	custom	robot,	how	do	you	go	about	controlling	it	with	ROS?

In	this	chapter,	we’ll	walk	through	the	steps	of	connecting	a	new	robot	(albeit	one	inspired
by	a	very	old	robot)	to	ROS,	allowing	us	to	then	use	the	libraries	and	tools	that	we’ve
discussed	throughout	this	book.	While	we’re	framing	this	chapter	as	a	guide	to	ROS-
controlling	your	from-scratch	custom	robot,	it	applies	equally	well	to	any	robot	that	isn’t
already	“ROS-ready,”	whether	a	robot	built	from	a	kit	of	parts	or	an	off-the-shelf	robot
that	doesn’t	yet	have	ROS	support	(an	increasingly	rare	occurrence).



TortoiseBot
We’re	going	to	build	a	new	indoor	mobile	robot.	For	inspiration,	we	look	to	one	of	the
very	earliest	such	robots,	which	was	called	Elsie	(Figure	16-1).	Elsie	was	one	of	a	series
of	robots	built	in	the	late	1940s	by	Grey	Walter,	a	British	neurophysiologist	(or	perhaps
cybernetician).	A	pioneer	in	his	field,	Walter	built	robots	as	part	of	his	study	of	animal
behavior.	He	believed	that	by	building	machines	that	exhibit	complex,	lifelike	behavior,
we	can	learn	about	how	natural	organisms	work.	This	area	of	study	would	eventually
come	to	be	called	artificial	life.

Figure	16-1.	Grey	Walter’s	Elsie,	one	of	a	series	of	“Tortoise”	robots	built	in	the	1940s

Walter’s	robots	were	amazing	technological	and	scientific	feats:	hand-built,	analog
machines	capable	of	randomly	wandering	around	a	room,	avoiding	(or	at	least	bouncing
off)	obstacles,	and	returning	to	a	charging	station	when	their	batteries	ran	low.1	Walter’s
tortoise	was	built	on	a	tricycle	chassis,	with	two	passive	rear	wheels	and	one	steered	and
driven	front	wheel.	Coupled	to	the	front	wheel	was	a	photo	diode	that	caused	the	robot	to



steer	toward	light	sources	(but,	through	clever	electrical	integration,	to	prefer	not	to	get
too	close).

Because	of	their	dome-like	protective	shells	and	their	plodding	movements,	Walter	called
his	robots	tortoises.	In	homage	to	Walter’s	work,	in	this	chapter	we’re	going	to	build	a
TortoiseBot.	Well,	we	won’t	actually	build	it,	but	we	will	explain	what	you	need	to	know
to	control	it	from	ROS,	were	you	to	build	it	yourself	—	and	we	will	build	a	simulation
model	of	it.

The	steps	to	using	ROS	to	control	a	TortoiseBot,	or	pretty	much	any	new	robot,	are:

1.	 Decide	on	the	ROS	message	interface.

2.	 Write	drivers	for	the	robot’s	motors.

3.	 Write	a	model	of	the	robot’s	physical	structure.

4.	 Extend	the	model	with	physical	properties	for	use	in	simulation	with	Gazebo.

5.	 Publish	coordinate	transform	data	via	tf	and	visualize	it	with	rviz.

6.	 Add	sensors,	with	driver	and	simulation	support.

7.	 Apply	standard	algorithms,	such	as	navigation.

In	the	following	sections	and	into	the	next	chapter,	we’ll	go	through	each	step,	explaining
the	decisions	that	need	to	be	made	along	the	way.	At	the	end,	you’ll	be	ready	to	get	your
own	custom	robot	(regardless	of	whether	it	bears	any	resemblance	to	the	TortoiseBot)
running	ROS.



ROS	Message	Interface
The	first	thing	that	we	need	to	do	is	to	get	control	of	the	mobile	base.	We	want	to	write	a
ROS	node	that	will	communicate	with	the	mobile	base	hardware,	in	whatever	manner	is
available,	then	present	to	the	rest	of	the	system	a	standard	ROS	interface.	This	is	a
common	and	core	concept	of	ROS:	abstraction.	Whatever	the	particulars	of	a	specific
robot,	in	ROS	we	want	to	make	it	look	and	interact	like	other	robots	to	which	it	is	similar.
Then	we	can	reuse	an	entire	ecosystem	of	tools	and	libraries	that	are	designed	to	work
with	a	standard	interface.

The	defining	characteristics	of	the	TortoiseBot	are	that	it	is	mobile	and	that	it	is	confined
to	driving	on	the	ground	(as	opposed	to	climbing	walls	or	flying).	More	specifically,
because	of	its	kinematic	configuration,	the	TortoiseBot	can	move	in	the	ways	that	a
tricycle	can:	it	can	translate	forward	and	backward	(along	its	x-axis),	it	can	yaw	(rotate
about	its	z-axis),	and	it	can	do	combinations	of	the	two.	The	TortoiseBot	cannot	translate
side	to	side	(y-axis)	or	up	and	down	(z-axis).	Neither	can	it	roll	or	pitch	its	body	(rotation
about	its	x-	or	y-axes,	respectively).	So,	fundamentally,	it	is	sufficient	to	control	the
TortoiseBot	by	sending	it	a	pair	of	desired	velocities:
vx

Linear	velocity	along	the	x-axis	(by	convention,	positive	is	forward).
vyaw

Rotational	velocity	about	the	z-axis	(by	convention,	positive	is	counter-clockwise).

In	return,	we	would	expect	the	robot	to	report	its	position	and	orientation	in	the	plane	as
(x,	y,	yaw).

To	represent	robots	like	the	TortoiseBot,	the	ROS	community	has	arrived	at	the	following
ROS	message	interface,	which	is	supported	by	a	huge	variety	of	mobile	platforms:

geometry_msgs/Twist	(cmd_vel	topic)

The	desired	velocity	of	the	robot,	sent	as	a	command	to	the	robot.

nav_msgs/Odometry	(odom	topic)

The	position	and	orientation	of	the	robot,	sent	as	data	by	the	robot.

Let’s	see	what’s	in	each	of	those	message	types,	using	the	rosmsg	show	command,	starting
with	geometry_msgs/Twist:

user@hostname$	rosmsg	show	geometry_msgs/Twist

geometry_msgs/Vector3	linear

		float64	x

		float64	y

		float64	z

geometry_msgs/Vector3	angular

		float64	x

		float64	y

		float64	z



That’s	simple	enough:	three	linear	velocities	for	translations	along	each	axis,	and	three
angular	velocities	for	rotations	about	each	axis.	We	don’t	actually	need	some	of	the	fields
(specifically,	linear/y,	linear/z,	angular/x,	or	angular/y),	but	it’s	easy	enough	to
ignore	them	and	just	take	the	values	that	we	can	use.

Now	for	nav_msgs/Odometry:

user@hostname$	rosmsg	show	nav_msgs/Odometry

std_msgs/Header	header

		uint32	seq

		time	stamp

		string	frame_id

string	child_frame_id

geometry_msgs/PoseWithCovariance	pose

		geometry_msgs/Pose	pose

				geometry_msgs/Point	position

						float64	x

						float64	y

						float64	z

				geometry_msgs/Quaternion	orientation

						float64	x

						float64	y

						float64	z

						float64	w

		float64[36]	covariance

geometry_msgs/TwistWithCovariance	twist

		geometry_msgs/Twist	twist

				geometry_msgs/Vector3	linear

						float64	x

						float64	y

						float64	z

				geometry_msgs/Vector3	angular

						float64	x

						float64	y

						float64	z

		float64[36]	covariance

NOTE
Many	ROS	messages	contain	a	field	called	header,	which	has	the	type	std_msgs/Header.	The	header	is
used	to	communicate	two	pieces	of	information	that	are	necessary	for	the	correct	interpretation	of	many
types	of	data	in	a	robot	system:	at	what	time	the	data	was	produced	and	in	what	coordinate	frame	it	is
represented.	The	header	is	treated	specially	in	a	few	ways	in	ROS,	notably	in	the	tf	library,	which	provides
tools	for	converting	many	types	of	data	between	coordinate	frames.	As	a	result,	you	can	easily	perform
what	would	otherwise	be	complex	operations,	like	converting	range	scans	acquired	at	different	times	from
different	lasers	into	a	common	coordinate	frame	for	processing.

That’s	an	imposing	message	format,	with	a	lot	of	fields	to	fill	out.	Fortunately,	as	with	the
geometry_msgs/Twist	message,	we	can	leave	a	lot	of	them	empty.	To	report	the	robot’s
position	and	orientation,	we	only	really	need	to	fill	out	the	pose/pose/​posi⁠tion	and
pose/pose/orientation	fields,	ignoring	the	covariance	fields	(which	are	only	needed
for	downstream	components	that	reason	about	uncertainty).	Within	pose/pose/position,
we	only	need	to	fill	out	x	and	y.	Working	with	pose/pose/orientation	is	little	more
complex:	even	though	the	robot	can	only	rotate	about	one	axis	(z),	we	need	to	construct	a
valid	quaternion	that	represents	a	3D	orientation.	Constructing	and	working	with
quaternions	is	outside	the	scope	of	this	book;	luckily	there	are	lots	of	great	tutorials	online,
as	well	as	various	helper	utilities	within	ROS	(a	good	place	to	start	is	the	documentation
for	tf).

http://wiki.ros.org/tf?distro=indigo


While	we	can	ignore	unneeded	fields,	it	certainly	seems	like	the	cmd_vel/odom	interface	is
overkill	for	our	simple	TortoiseBot,	which	just	roams	around	on	the	ground.	We	could
easily	define	a	much	simpler	message	interface	for	the	TortoiseBot	that	includes	just	the
fields	that	make	sense	for	our	robot.	But	then	we	wouldn’t	be	compatible	with	other
robots,	or	the	tools	and	libraries	that	are	designed	to	work	with	them.	This	is	a	common
point	of	tension:	when	deciding	what	ROS	interface	to	present,	we	must	weigh	specificity
against	interoperability,	looking	for	the	best	fit	for	our	robot	that	will	give	us	the	greatest
ability	to	reuse	existing	tools	and	libraries.	In	the	case	of	a	mobile	robot,	it’s	much	more
powerful	and	flexible	to	use	the	cmd_vel/odom	interface,	which	can	represent	arbitrary
poses	in	3D,	with	uncertainty.	A	common	set	of	tools	can	operate	on	just	about	any	mobile
robot	that	uses	this	interface,	whether	it	drives	on	the	ground	or	flies	in	the	sky.

As	a	result,	the	ROS	community	has	settled	on	this	interface	for	mobile	robots,	including
simple	ones	like	our	TortoiseBot.	We’ll	follow	suit.



Hardware	Driver
Now	that	we	know	what	ROS	interface	to	support,	we	need	to	actually	write	the	node	that
will	control	the	robot’s	motors	and	read	from	its	encoders	(sensors	on	the	motors	that
measure	how	much	each	motor	has	turned).	The	details	of	this	step,	which	is	to	write	a
driver,	are	very	much	dependent	on	how	the	robot	hardware	is	designed	and	how	you	can
communicate	with	it.	There	will	be	some	kind	of	physical	interface,	such	as	USB,	along
with	some	kind	of	communication	protocol,	which	is	often	custom.	If	you’re	lucky,	there
will	also	be	some	code	that	implements	the	communication	protocol,	in	which	case	you
could	be	saved	a	lot	of	effort	(or	not,	if	the	code	isn’t	structured	or	licensed	in	a	way	that
makes	it	easily	reusable).

Whatever	the	communication	details,	you’ll	likely	need	to	do	some	math	in	your	driver
node	to	convert	between	the	robot’s	native	representation	of	commands	and	data	and	the
cmd_vel/odom	ROS	interface	that	we’re	going	to	support.	For	a	robot	like	the	TortoiseBot,
this	interface	is	sometimes	referred	to	as	the	“unicycle	model”	because	it	treats	the	robot
as	a	one-wheeled	vehicle	that	can	control	its	forward	and	turning	speeds	independently.
The	robot	is	not	actually	a	unicycle,	of	course,	so	some	translation	is	needed.	For	example,
the	robot	might	natively	operate	on	a	per-wheel	basis,	accepting	desired	velocities	for
individual	wheels	and	reporting	back	individual	wheel	rotation	data.	In	that	case,	your
node	will	need	to	perform	the	necessary	trigonometric	calculations,	using	knowledge	of
the	kinematic	configuration	of	the	robot	(wheel	diameters,	axle	lengths,	etc.)	to	convert
between	individual	wheel	states	and	overall	robot	states.	This	calculation	is	usually
straightforward;	for	more	complex	cases,	consult	a	textbook	that	covers	robot	kinematics.

We	can’t	provide	general-purpose	driver	code	for	controlling	a	mobile	base,	but	there	are
many	examples	within	the	ROS	ecosystem	to	look	at.	For	the	rest	of	this	chapter,	we’ll
proceed	under	the	assumption	that	you	have	written	a	driver	node	that	supports	the
cmd_vel/odom	interface	and	will	discuss	the	other	steps	that	are	needed	for	ROS
integration.	The	following	steps,	starting	with	writing	a	model,	can	all	be	tried	out	in
simulation,	without	any	hardware	or	drivers.



Modeling	the	Robot:	URDF
To	use	our	TortoiseBot	with	many	standard	ROS	tools,	we	need	to	write	down	a	model	of
the	robot’s	kinematics.	That	is,	we	need	to	describe	the	physical	configuration	of	the	robot,
such	as	how	many	wheels	it	has,	where	they	are	placed,	and	which	directions	they	turn	in.
This	information	will	be	used	by	rviz	to	visualize	the	state	of	the	robot,	by	gazebo	to
simulate	it,	and	by	systems	like	the	navigation	stack	to	make	it	drive	around	the	world	in	a
purposeful	manner.

In	ROS,	we	represent	robot	models	in	an	XML	format	called	Unified	Robot	Description
Format	(URDF).	This	format	is	designed	to	represent	a	wide	variety	of	robots,	from	a	two-
wheeled	toy	to	a	walking	humanoid.	URDF	is	similar	to	the	Simulation	Description
Format	(SDF),	which	we	used	to	build	Gazebo	environments	around	existing	robots	in
Chapter	11	and	Chapter	14.	While	SDF	includes	extra	features	that	are	useful	in
simulation,	URDF	is	required	by	most	ROS	tools,	and	Gazebo	can	understand	it	in
addition	to	SDF.	So,	it’s	best	to	model	a	new	robot	using	URDF.

In	this	section,	we’ll	walk	through	constructing	a	URDF	model	for	the	TortoiseBot.	For
complete	coverage	of	URDF	syntax	and	features,	consult	the	URDF	documentation.

To	model	the	TortoiseBot,	let’s	consider	its	essential	components:

One	chassis

Two	rear	wheels,	attached	to	the	chassis

One	front	caster,	attached	to	the	chassis

One	front	wheel,	attached	to	the	front	caster

You	can	imagine	these	components	forming	a	tree:	the	chassis	is	the	root,	with
connections	to	each	of	the	rear	wheels	and	the	front	caster,	which	in	turn	is	connected	to
the	front	wheel.	In	fact,	URDF	is	only	capable	of	representing	robots	whose	kinematics
can	be	described	by	a	tree;	looping	structures	are	not	allowed	(fortunately,	with	the
exception	of	a	certain	class	of	manufacturing	robot,	looping	structures	are	fairly
uncommon	in	robots).

We	will	translate	this	tree-like	narrative	description	of	the	TortoiseBot	into	the	language	of
URDF,	which	is	focused	primarily	on	links	and	joints:

A	link	is	a	rigid	body,	such	as	a	chassis	or	a	wheel.

A	joint	connects	two	links,	defining	how	they	can	move	with	respect	to	each	other.

Let’s	start	our	TortoiseBot	model	with	one	link	for	the	chassis,	shown	in	Example	16-1.

Example	16-1.	Model	of	the	TortoiseBot	chassis
<?xml	version="1.0"?>

<robot	name="tortoisebot">

		<link	name="base_link">

http://wiki.ros.org/urdf?distro=indigo


				<visual>

						<geometry>

								<box	size="0.6	0.3	0.3"/>

						</geometry>

						<material	name="silver">

								<color	rgba="0.75	0.75	0.75	1"/>

						</material>

				</visual>

		</link>

</robot>

This	short	model	declares	one	link,	called	base_link	(this	name	is	more	common	than
chassis	in	ROS	systems),	which	is	visually	represented	by	a	box	(a	rectangular	solid)	that
measures	0.6	m	×	0.3	m	×	0.3	m.	As	with	all	URDF	links,	by	default,	the	origin	of	this	box
is	its	center;	this	fact	will	be	important	later,	when	we	start	attaching	joints	at	offsets	from
links.	We	give	the	box	a	color	that	we	call	“silver,”	defined	in	the	commonly	used	RGBA
space,	which	combines	levels	of	red,	green,	and	blue	to	form	a	color	(the	A	is	for	alpha,
which	represents	transparency,	where	0	is	transparent	and	1	is	opaque).	To	see	what	this
model	looks	like,	save	that	code	to	a	file	called	tortoisebot.urdf,	and	use	roslauch
urdf_tutorial/display.launch	to	visualize	it:

user@hostname$	roslaunch	urdf_tutorial	display.launch	model:=tortoisebot.urdf

You	should	see	rviz	pop	up,	showing	you	a	single	oblong	silver	box,	similar	to	Figure	16-
2.

TIP
Another	handy	tool	for	visualizing	URDF	model	structures	is	urdf_to_graphiz.	It	parses	a	URDF	file	to
produce	a	topological	graph	representation	of	the	model,	showing	how	links	and	joints	are	connected.	Try	it
on	your	TortoiseBot	model	by	running	urdf_to_graphiz	tortoisebot.urdf,	then	opening	the	resulting
tortoisebot.pdf	file	with	a	PDF	viewer.

Next	let’s	add	the	front	caster.	We	can	represent	it	as	another	oblong	box,	oriented
vertically	and	attached	to	the	front	of	the	chassis,	as	shown	in	Example	16-2.



Figure	16-2.	Visualization	of	the	TortoiseBot	chassis

Example	16-2.	Code	for	the	TortoiseBot	front	caster	and	joint
		<link	name="front_caster">

				<visual>

						<geometry>

								<box	size="0.1	0.1	0.3"/>

						</geometry>

						<material	name="silver"/>

				</visual>

		</link>

		<joint	name="front_caster_joint"	type="continuous">

				<axis	xyz="0	0	1"/>

				<parent	link="base_link"/>

				<child	link="front_caster"/>

				<origin	rpy="0	0	0"	xyz="0.3	0	0"/>

		</joint>

This	snippet	of	URDF	declares	a	second	link,	front_caster,	along	with	a	joint,
front_caster_joint,	which	connects	the	front_caster	to	the	base_link.	The	joint	is
continuous,	which	means	that	it	can	rotate	indefinitely	in	either	direction	about	a	given
axis,	which	in	this	case	is	z-axis	(determined	by	the	axis	tag).	The	joint	types	supported
by	URDF	are	listed	in	Table	16-1.	The	origin	of	the	joint	is	offset	in	x	to	place	it	at	the
front	of	its	parent,	base_link.

Table	16-1.	Joint	types	supported	by	URDF



Name Description

continuous A	joint	that	can	rotate	indefinitely	about	a	single	axis

revolute Like	a	continuous	joint,	but	with	upper	and	lower	angle	limits

prismatic A	joint	that	slides	linearly	along	a	single	axis,	with	upper	and	lower	position	limits

planar A	joint	that	allows	translation	and	rotation	perpendicular	to	a	plane

floating A	joint	that	allows	full	six-dimensional	translation	and	rotation

fixed A	special	joint	type	that	allows	no	motion

Add	the	new	code	to	tortoisebot.urdf,	before	the	closing	</robot>	tag,	and	save	it.	Then
launch	the	display	tool	again:

user@hostname$	roslaunch	urdf_tutorial	display.launch	model:=tortoisebot.urdf

Now	rviz	will	show	you	both	links,	with	red,	blue,	and	green	markers	designating	the
origin	of	the	caster	link,	similar	to	Figure	16-3.

The	caster	looks	like	it’s	in	the	right	place,	but	how	can	we	check	whether	the	joint	is
working	correctly?	Fortunately,	the	URDF	display	tool	can	help.	Launch	it	again,	this	time
with	the	extra	argument	gui:=True:

user@hostname$	roslaunch	urdf_tutorial	display.launch	model:=tortoisebot.urdf	\

		gui:=True

Now,	in	addition	to	rviz,	you’ll	get	a	small	control	GUI	called	the	joint_state_​
pub⁠lisher,	similar	to	Figure	16-4.

The	joint_state_publisher	can	be	used	to	control	our	newly	defined	joint.	Slide	it	back
and	forth,	and	in	rviz	you	should	see	the	front	caster	rotate	back	and	forth	with	respect	to
the	chassis.	As	you	can	already,	the	URDF	display	tool,	along	with	the	control	GUI,
provides	an	invaluable	way	of	checking,	debugging,	and	fixing	a	URDF	model.



Figure	16-3.	Visualization	of	the	TortoiseBot	chassis,	with	front	caster

Figure	16-4.	joint_state_publisher	GUI	for	one	joint



Figure	16-5.	rqt_graph	view	of	the	nodes	involved	in	visualizing	and	actuating	the	TortoiseBot	model

Let’s	stop	to	consider	what’s	happening	under	the	hood:	we	don’t	have	a	real	robot,	or
even	a	simulation	of	a	robot,	so	what	is	the	joint_state_publisher	doing?	There	are
actually	several	things	going	on,	as	shown	in	Figure	16-5:

On	startup,	the	URDF	model	of	the	robot	was	loaded	into	the	parameter	server,	under
the	standard	name	robot_description.	To	see	the	version	that’s	in	the	parameter
server,	try	rosparam	get	/robot_description.

The	joint_state_publisher,	in	response	to	the	slider	state	in	the	GUI,	is	publishing
sensor_msgs/JointState	messages	on	the	/joint_states	topic.	Each	message
declares	the	position	of	each	joint	in	the	system.	Try	rostopic	echo	/⁠joint_​states
to	see	the	data	for	yourself.

Another	node,	the	robot_state_publisher,	read	the	URDF	model	from	the	parameter
server	and	is	subscribed	to	/joint_states.	This	node	combines	the	1D	position	of
each	joint	with	the	kinematic	model	to	calculate	a	tree	of	6D	(position	and	orientation)
coordinate	transforms	that	describe	where	in	space	the	robot’s	links	are	with	respect	to
each	other	(in	other	words,	it	performs	forward	kinematics).	This	tree	of	transforms	is
published	as	tf2_msgs/TFMessage	messages	on	the	/tf	topic.

Finally,	rviz	also	read	the	URDF	model	from	the	parameter	server	and	is	subscribed	to
/tf,	allowing	it	to	visualize	the	positions	and	orientations	of	the	robot’s	links.

This	arrangement	may	seem	overly	complex,	but	its	modularity	allows	for	significant
reuse	of	the	pieces.	For	example,	the	robot_state_publisher	is	commonly	used	with
robots	(both	real	and	simulated)	to	handle	the	common	task	of	forward	kinematics,
allowing	the	authors	of	robot	drivers	to	publish	just	the	individual	joint	state	information
and	not	the	full	coordinate	transform	tree.	And,	as	you’ve	already	seen,	rviz	is	used



extensively	in	ROS	development,	especially	for	visualization	of	data	related	to	coordinate
transforms.	So,	the	URDF	display	tool	is	really	just	a	combination	of	commonly	used
ROS	tools	with	a	simple	frontend	GUI	that	allows	you	to	supply	fake	joint	position
information.	This	kind	of	reuse	is	a	hallmark	of	the	ROS	philosophy	(originally	the	Unix
philosophy):	build	small	reusable	tools,	then	configure	and	combine	them	to	do	what	you
need.

Getting	back	to	our	TortoiseBot	model,	let’s	add	the	wheels,	starting	with	the	front	wheel,
shown	in	Example	16-3.

Example	16-3.	Code	for	the	TortoiseBot	front	wheel	and	joint
		<link	name="front_wheel">

				<visual>

						<geometry>

								<cylinder	length="0.05"	radius="0.035"/>

						</geometry>

						<material	name="black"/>

				</visual>

		</link>

		<joint	name="front_wheel_joint"	type="continuous">

				<axis	xyz="0	0	1"/>

				<parent	link="front_caster"/>

				<child	link="front_wheel"/>

				<origin	rpy="-1.5708	0	0"	xyz="0.05	0	-.15"/>

		</joint>

This	URDF	snippet	declares	a	new	link	for	the	wheel	itself,	represented	as	a	cylinder,	and
a	new	continuous	joint	to	connect	the	wheel	to	the	caster.	Note	that	the	origin	of	the	joint
is	offset	in	y	and	z	to	move	it	to	the	front	bottom	of	the	caster,	and	also	rotated	about	x	to
put	the	round	part	of	the	wheel	on	the	ground.	Run	the	display	tool	again	to	check	the
result.	Now	you’ll	have	two	sliders	in	the	joint_state_publisher	GUI,	one	for	the	caster
joint	and	one	for	the	front	wheel	joint.	Try	them	both	to	check	the	rotation	axes	and
directions.

Finally,	similar	to	the	front	wheel,	let’s	add	the	rear	wheels,	shown	in	Example	16-4.

Example	16-4.	Code	for	the	TortoiseBot	rear	wheels	and	joints
		<link	name="right_wheel">

				<visual>

						<geometry>

								<cylinder	length="0.05"	radius="0.035"/>

						</geometry>

						<material	name="black">

								<color	rgba="0	0	0	1"/>

						</material>

				</visual>

		</link>

		<joint	name="right_wheel_joint"	type="continuous">

				<axis	xyz="0	0	1"/>

				<parent	link="base_link"/>

				<child	link="right_wheel"/>

				<origin	rpy="-1.5708	0	0"	xyz="-0.2825	-0.125	-.15"/>

		</joint>

		<link	name="left_wheel">

				<visual>

						<geometry>

								<cylinder	length="0.05"	radius="0.035"/>

						</geometry>

						<material	name="black"/>



				</visual>

		</link>

		<joint	name="left_wheel_joint"	type="continuous">

				<axis	xyz="0	0	1"/>

				<parent	link="base_link"/>

				<child	link="left_wheel"/>

				<origin	rpy="-1.5708	0	0"	xyz="-0.2825	0.125	-.15"/>

		</joint>

This	URDF	snippet	adds	two	more	wheels	with	continuous	joints	offset	so	as	to	be
attached	to	the	back	end	of	the	chassis,	one	on	either	side.	Launch	the	display	tool	to	see
the	result,	which	should	look	similar	to	Figure	16-6.	Play	with	the	sliders	in	the
joint_state_publisher	to	check	all	four	joints.

Figure	16-6.	Visualization	of	the	complete	TortoiseBot	model

We	now	have	a	good	kinematic	model	of	the	TortoiseBot.	You	may	have	noticed	that	it’s
not	very	pretty,	and	indeed,	the	visual	appearance	of	robot	models	can	be	greatly	improved
through	the	use	of	high-quality	meshes,	but	we	won’t	cover	that	topic	here.	Instead,	we’ll
proceed	with	how	to	simulate	a	TortoiseBot.



Simulation	in	Gazebo
Our	URDF	model	of	the	TortoiseBot	captures	the	kinematics	and	visual	appearance	of	the
robot,	but	it	doesn’t	say	anything	about	the	physical	characteristics	that	are	needed	to
simulate	it.	To	simulate	a	TortoiseBot	in	Gazebo,	we	need	to	add	two	new	tags	to	every
link	in	the	model:
<collision>

Similar	to	visual,	this	tag	defines	the	size	and	shape	of	the	robot’s	body,	for	the
purpose	of	determining	how	it	will	interact	with	other	objects.	The	collision	geometry
can	be	identical	to	the	visual	geometry,	but	it’s	often	different;	e.g.,	you	may	use	a
complex	mesh	for	a	good	visual	appearance,	but	a	set	of	simple	shapes	(boxes,
cylinders,	etc.)	for	efficient	collision	detection.

<inertial>

This	tag	defines	the	mass	and	moment	of	inertia	of	the	link,	which	are	needed	to
move	it	according	to	Newton’s	laws.

To	add	collision	geometry,	given	the	simplicity	of	our	visual	model,	we	just	duplicate	the
visual	geometry.	Go	through	your	tortoisebot.urdf,	adding	for	each	<visual>/<geometry>
tag	a	sibling	<collision>/<geometry>	tag,	with	the	same	shape	and	size.	For	example,	the
base_link	with	collision	information	would	look	like	Example	16-5.	Note	that	you	don’t
need	to	add	a	<material>	tag	for	the	collision	body.

Example	16-5.	Code	for	the	TortoiseBot	chassis,	with	collision	information
		<link	name="base_link">

				<visual>

						<geometry>

								<box	size="0.6	0.3	0.3"/>

						</geometry>

						<material	name="silver">

								<color	rgba="0.75	0.75	0.75	1"/>

						</material>

				</visual>

				<collision>

						<geometry>

								<box	size="0.6	0.3	0.3"/>

						</geometry>

				</collision>

		</link>

To	add	inertial	data,	we	need	to	determine	the	mass	properties	of	each	link.	Doing	this	for
a	real	robot	can	be	surprisingly	difficult.	While	resources	like	detailed	CAD	information
can	be	a	good	guide,	it’s	often	necessary	to	measure	the	system	physically,	either	through
disassembly	and	analysis	of	each	component,	or	through	carefully	designed	experiments
with	the	complete	system.	In	lieu	of	such	experiments,	it’s	common	to	use	informed
estimates	of	mass	properties	and	to	refine	them	over	time.

For	our	purposes	with	TortoiseBot,	we’ll	get	reasonable	simulation	behavior	if	the	masses
are	in	the	right	order	of	magnitude.	To	keep	things	simple,	we’ll	give	the	chassis	a	mass	of
1.0	kg,	the	caster	0.1	kg,	and	each	wheel	0.1	kg.	For	help	with	computing	inertia	matrices,
we	can	consult	some	well-known	formulas	for	computing	moments	of	inertia	for	objects

http://bit.ly/moments_of_inertia


of	various	shapes,	including	boxes	and	cylinders.	Using	those	formulas,	we	computed	the
inertia	values	shown	in	Example	16-6	for	the	chassis	box,	in	Example	16-7	for	the	caster
box,	and	in	Example	16-8	for	each	wheel	cylinder.	Add	each	block	of	XML	inside	the
corresponding	link(s)	in	your	tortoisebot.urdf.

Example	16-6.	TortoiseBot	inertial	data	for	the	chassis
				<inertial>

						<mass	value="1.0"/>

						<inertia	ixx="0.015"	iyy="0.0375"	izz="0.0375"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Example	16-7.	TortoiseBot	inertial	data	for	the	caster
				<inertial>

						<mass	value="0.1"/>

						<inertia	ixx="0.00083"	iyy="0.00083"	izz="0.000167"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Example	16-8.	TortoiseBot	inertial	data	for	each	wheel
				<inertial>

						<mass	value="0.1"/>

						<inertia	ixx="5.1458e-5"	iyy="5.1458e-5"	izz="6.125e-5"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Don’t	worry	if	you	don’t	find	these	values	to	be	intuitive	or	meaningful.	Your	authors
don’t,	either;	nor	do	many	people	who	work	professionally	on	simulation	of	rigid	body
dynamics.	What’s	important	is	to	have	a	general	idea	of	how	to	approximate	them.

TIP
When	working	with	inertial	values,	here’s	a	great	way	to	visually	debug	things	is	in	Gazebo:	click	on
View→“Center	of	Mass/Inertia”	to	see	a	visual	representation	of	the	inertia	matrix	and	mass	for	each	link	in
your	robot.	If	the	inertial	data	is	very	different	from	(e.g.,	much	smaller	or	larger	than)	the	visual	or
collision	geometry,	then	you	have	a	problem.

Now	we’re	ready	to	load	our	TortoiseBot	model	in	Gazebo.	There	are	a	few	different	ways
to	do	this.	Because	we	want	to	use	some	ROS	tools	with	our	simulated	robot	(as	opposed
to	working	solely	within	Gazebo),	we’ll	follow	this	pattern,	using	roslaunch	to	automate
things:

1.	 Load	the	robot’s	URDF	model	into	the	parameter	server.

2.	 Launch	Gazebo	(e.g.,	with	an	empty	world).

3.	 Use	a	ROS	service	call	to	spawn	an	instance	of	the	robot	in	Gazebo,	reading	the
URDF	data	from	the	parameter	server.

This	process	might	seem	a	little	roundabout,	but	it’s	actually	a	very	flexible	way	of	doing
things.	For	a	start,	it	gets	the	URDF	model	onto	the	parameter	server,	where	it	can	be
accessed	by	other	nodes.	By	convention,	the	URDF	model	is	stored	in	the	parameter
server	under	the	name	/robot_description	(you	can	use	another	name	for	this	parameter,
but	then	you’d	have	to	change	the	default	settings	for	many	tools).	Once	it’s	on	the
parameter	server,	the	URDF	model	can	be	used	by	tools	like	rviz,	which	needs	the	model



to	visualize	the	robot,	or	a	path	planner,	which	needs	the	model	to	know	the	robot’s	shape
and	size.	A	well-written	ROS	tool	will	never	make	assumptions	about	the	physical
structure	of	a	robot,	but	rather	will	read	the	URDF	model	from	the	parameter	server	and
configure	its	behavior	based	on	the	model.

At	this	point,	we	need	to	organize	our	code	into	a	ROS	package,	which	we’ll	call
tortoisebot.	So,	create	a	directory	in	your	workspace	called	tortoisebot,	add	an
appropriate	package.xml	file,	then	move	your	tortoisebot.urdf	file	in	there.	Now	we’re
going	to	add	a	roslaunch	file	that	will	execute	the	preceding	steps	to	launch	Gazebo	with
a	TortoiseBot	in	it.	The	roslaunch	code	is	shown	in	Example	16-9.

Example	16-9.	tortoisebot.launch	file	to	bring	up	Gazebo	with	a	TortoiseBot	model
<launch>

		<!--	Load	the	TortoiseBot	URDF	model	into	the	parameter	server	-->

		<param	name="robot_description"	textfile="$(find	tortoisebot)/tortoisebot.urdf"	/>

		<!--	Start	Gazebo	with	an	empty	world	-->

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch"/>

		<!--	Spawn	a	TortoiseBot	in	Gazebo,	taking	the	description	from	the

							parameter	server	-->

		<node	name="spawn_urdf"	pkg="gazebo_ros"	type="spawn_model"

								args="-param	robot_description	-urdf	-model	tortoisebot"	/>

</launch>

In	this	launch	file,	we	load	the	URDF	file	into	the	parameter	server	as
/robot_description,	then	use	a	helper	launch	file	from	the	gazebo_ros	package	to	run
Gazebo	with	an	empty	world.	With	the	model	data	loaded	into	the	parameter	server	and
Gazebo	running,	we	use	the	helper	tool	spawn_model,	also	from	the	gazebo_ros	package,
to	ask	Gazebo	to	spawn	an	instance	of	the	TortoiseBot,	reading	URDF	data	from	the
/robot_description	parameter.

Save	that	file	as	tortoisebot/tortoisebot.launch	and	give	it	a	try:

user@hostname$	roslaunch	tortoisebot	tortoisebot.launch

You	should	see	Gazebo	pop	up,	with	a	TortoiseBot,	similar	to	Figure	16-7.	Hooray!



Figure	16-7.	Gazebo	simulating	the	TortoiseBot

Use	the	Gazebo	GUI	to	explore	your	robot.	For	example,	if	you	select	View→Wireframe
and	View→Joints,	you	can	see	the	structure	of	the	robot,	similar	to	Figure	16-8.	You
might	wonder	how,	in	a	physics-based	simulation,	the	caster	link	and	the	chassis	link	can
interpenetrate	each	other.	The	reason	is	that	by	default	Gazebo	disables	collision	checking
between	links	that	are	part	of	the	same	model.



Figure	16-8.	Wireframe	and	joint	view	of	TortoiseBot	in	Gazebo

Now	that	we	have	a	simulated	robot,	let’s	control	it.	But	how?	Recall	from	earlier	in	this
chapter	that	we	expect	robots	like	the	TortoiseBot	to	support	the	cmd_vel/odom	interface	to
take	commands	and	report	position.	On	the	real	robot,	that	interface	would	be
implemented	by	a	hardware	driver.	In	simulation,	we	need	to	do	something	similar,	but
fortunately	easier:	we’ll	load	a	Gazebo	plugin.	In	particular,	we’ll	load	a	differential	drive
plugin	that	will	allow	us	to	control	the	TortoiseBot	via	cmd_vel	messages,	which	the
plugin	will	convert	into	appropriate	velocities	for	the	left	and	right	wheels.	(At	this	point,
we’re	diverging	from	the	mechanical	design	of	Grey	Walter’s	Elsie,	which	was	driven
with	motors	on	the	front	caster	and	wheel,	not	the	back	wheels.	We	don’t	have	an	off-the-
shelf	plugin	to	implement	cmd_vel	on	top	of	that	arrangement	of	motors,	so	we’ll	cheat	a
bit	and	drive	the	robot	with	motors	on	the	back	wheels.)

To	load	the	differential	drive	plugin,	we	need	to	add	another	block	to	the	TortoiseBot
URDF	model,	shown	in	Example	16-10.

Example	16-10.	Extra	URDF	code	to	load	the	differential	drive	plugin	for	TortoiseBot
		<gazebo>

				<plugin	name="differential_drive_controller"

												filename="libgazebo_ros_diff_drive.so">

						<leftJoint>left_wheel_joint</leftJoint>



						<rightJoint>right_wheel_joint</rightJoint>

						<robotBaseFrame>base_link</robotBaseFrame>

						<wheelSeparation>0.25</wheelSeparation>

						<wheelDiameter>0.07</wheelDiameter>

						<publishWheelJointState>true</publishWheelJointState>

				</plugin>

		</gazebo>

In	the	configuration	of	the	differential	drive	plugin,	we’re	telling	it	to	control	the
left_wheel_joint	and	right_wheel_joint.	We’re	also	telling	it	how	large	the	wheels	are
and	what	the	distance	is	between	them,	and	that	the	base	of	the	robot	is	called	base_link
(an	improved	version	of	the	plugin	could	in	many	cases	infer	this	data	from	the	model).
Finally,	we	tell	the	plugin	to	publish	/joint_states	messages	for	positions	of	the	wheels.

Insert	that	XML	snippet	into	tortoisebot.urdf,	anywhere	inside	the	<robot>	tag,	then
relaunch	with	roslaunch	tortoisebot	tortoisebot.launch.	Gazebo	will	look	the	same,
but	now	there’s	a	plugin	ready	to	help	us	drive	the	robot	with	messages	sent	to	cmd_vel.
Check	that	it’s	there	with	rostopic:

user@hostname$	rostopic	info	cmd_vel

Type:	geometry_msgs/Twist

Publishers:	None

Subscribers:

	*	/gazebo	(http://rossum:57336/)

That	looks	good,	so	let’s	try	sending	a	command.	We	can	do	it	manually	via	rostopic,
sending	velocities	of	0	m/s	for	translation	along	the	x-axis	and	0.5	rad/s	for	rotation	about
the	z-axis:

user@hostname$	rostopic	pub	-1	cmd_vel	geometry_msgs/Twist	\

		'{linear:	{x:	0.0},	angular:	{z:	0.5}}'

You	should	see	the	robot	rotate	in	place,	counter-clockwise	(which	is	the	direction	of
positive	rotation	about	the	robot’s	z-axis).	It’s	nice	that	we	can	dig	down	and	send
commands	directly	like	this	with	rostopic,	but	it’s	not	a	great	way	to	drive	a	robot.
Instead,	let’s	use	the	teleop_twist_keyboard	tool,	which	reads	keypresses	and	publishes
corresponding	cmd_vel	messages	(we	could	also	use	the	custom	teleop	program	that	was
covered	in	“Keyboard	Driver”):

user@hostname$	rosrun	teleop_twist_keyboard	teleop_twist_keyboard.py

Reading	from	the	keyboard		and	Publishing	to	Twist!

Moving	around:

			u				i				o

			j				k				l

			m				,				.

q/z	:	increase/decrease	max	speeds	by	10%

w/x	:	increase/decrease	only	linear	speed	by	10%

e/c	:	increase/decrease	only	angular	speed	by	10%

anything	else	:	stop

CTRL-C	to	quit



Use	the	keys	displayed	on	the	screen	to	move	the	robot.	Drive	it	forward	and	backward,
and	turn	it	in	place.	Note	how,	especially	when	you	change	directions,	the	motion	of	the
caster	and	its	effect	on	the	behavior	of	the	robot	are	captured	by	Gazebo.	We	didn’t
program	in	anything	about	the	caster	swiveling	around;	it	just	follows	from	first	principles
of	physics,	given	the	model	that	we	built.

TIP
When	you’re	working	with	a	mobile	robot	that’s	roaming	around	in	Gazebo,	you	can	keep	it	automatically
in	the	center	of	the	camera	view:	in	the	model	tree	on	the	left	side	of	the	Gazebo	GUI,	right-click	on	the
name	of	the	robot	and	select	“Follow”.

We	know	that	the	cmd_vel	interface	is	working	to	command	the	robot;	let’s	check	that	the
odom	interface	is	working	to	provide	position	data	from	the	robot.	We	can	do	that	with
rostopic,	checking	specifically	for	the	pose/pose	field	of	the	message:

user@hostname$	rostopic	echo	/odom/pose/pose

position:

		x:	3.03941689732

		y:	-2.43708910971

		z:	0.185001156647

orientation:

		x:	4.91206137527e-06

		y:	2.22857873842e-06

		z:	-0.913856008315

		w:	-0.406038416947

You	should	see	a	stream	of	such	position	and	orientation	values	that	change	over	time	as
the	robot	moves.	Those	messages	are	being	published	by	the	differential	drive	controller,
which	is	converting	the	observed	motion	of	the	robot’s	individual	wheels	into	motion	of
the	robot’s	body,	in	the	same	coordinate	frame	as	the	velocities	that	we	commanded	via
cmd_vel.



Summary
In	this	chapter,	we	began	the	process	of	integrating	a	brand	new	robot	into	ROS.	We
discussed	standard	ROS	interfaces	for	mobile	robots,	considered	the	issues	of	writing
hardware	drivers,	then	built	a	functional	model	of	the	TortoiseBot,	including	the	physical
properties	necessary	to	simulate	it.	In	the	next	chapter,	we	will	build	further	on	the
TortoiseBot,	visualizing	it	with	rviz,	adding	sensors,	and	running	standard	algorithms
such	as	navigation.
1	Except	for	being	hand-built	and	analog,	they	might	remind	you	of	a	certain	robot
vacuum	cleaner	that	came	along	50	years	later.





Chapter	17.	Your	Own	Mobile	Robot:
Part	2

In	Chapter	16,	we	learned	how	to	add	a	new	mobile	robot,	the	TortoiseBot,	to	ROS.	We
decided	on	topic	APIs,	built	a	complete	Gazebo	model,	and	used	low-level	velocity
commands	to	drive	it	around	in	simulation.	In	this	chapter,	we’ll	take	the	next	big	step	by
getting	the	TortoiseBot	to	navigate	autonomously	(in	simulation).	To	get	there,	we’ll	take
a	series	of	smaller	steps:

Visualize	and	verify	transform	data.

Add	a	laser	sensor.

Configure	and	incorporate	the	navigation	stack.

Use	rviz	to	localize	the	robot	and	send	navigation	goals.



Verifying	Transforms
Recalling	the	setup	with	which	we	ended	the	previous	chapter,	we	can	launch	a	simulation
of	the	TortoiseBot	like	so:

user@hostname$	roslaunch	tortoisebot	tortoisebot.launch

That	launch	file	will	start	a	Gazebo	simulation	of	the	TortoiseBot	in	an	empty	world.	Now
it’s	time	to	use	rviz	to	visualize	the	state	of	the	(simulated)	robot.	Leaving	Gazebo
running,	start	rviz	in	the	usual	way:

user@hostname$	rviz

NOTE
You	might	wonder	why	Gazebo	and	rviz	are	separate	programs.	They	look	pretty	similar:	both	give	you	a
3D	view	of	a	robot	and	allow	you	to	visualize	various	aspects	of	the	robot	and	its	environment.	They	are
separate	programs	because	they	play	very	different	roles:	Gazebo	simulates	a	robot,	while	rviz	visualizes	a
robot.	Gazebo	is	a	substitute	for	a	real	robot	in	a	physical	environment,	computing	the	effects	of	forces	and
generating	synthetic	sensor	data.	While	the	3D	GUI	is	a	key	feature	of	Gazebo,	it	is	also	optional;	for
applications	like	continuous	integration	testing,	Gazebo	is	often	run	without	a	GUI.	The	job	of	rviz,	on	the
other	hand,	is	to	visualize	the	state	of	a	robot,	whether	physical	or	simulated	in	Gazebo,	by	talking	to	its
sensors	and	presenting	the	results.	In	other	words,	rviz	shows	you	what	the	robot	thinks	is	happening,
while	Gazebo	(or	looking	at	your	physical	robot)	shows	you	what	is	really	happening.

To	visualize	our	robot,	we	need	to	configure	some	aspects	of	the	rviz	display	(after
making	these	changes,	when	exiting	rviz,	you	should	click	Save	when	prompted	so	that
you	start	with	the	same	configuration	next	time):

In	Displays→Global	Options,	set	“fixed	frame”	to	“odom.”	That	way,	we’ll	be	able	to
see	the	robot	move	around	with	respect	to	its	odometric	origin.

In	Displays,	click	the	“Add”	button,	then	select	“RobotModel”	and	click	“OK”.	That
will	cause	rviz	to	read	the	TortoiseBot’s	URDF	model	from	the	parameter	server	and
display	it.

The	result	will	be	similar	to	Figure	17-1,	which	doesn’t	look	great.	The	robot’s	chassis	and
caster	links	seem	to	be	there,	but	not	in	the	right	positions	with	respect	to	each	other,	and
the	wheels	are	nowhere	to	be	seen.	In	addition,	rviz	is	unhappy:	in
Displays→RobotModel,	the	status	is	Error,	and	there	are	messages	complaining	about	a
lack	of	transforms	between	various	links.

The	problem	is	that	we	are	not	publishing	coordinate	transform	data.	Like	many	ROS
tools,	rviz	requires	that	information	about	the	relationships	between	different	coordinate
frames	be	provided	via	tf2_msgs/TFMessage	messages	on	the	/tf	topic.	We	need	to
provide	the	necessary	messages,	which	is	easy	to	do,	in	two	steps:

1.	 Publish	sensor_msgs/JointState	messages	for	all	of	the	robot’s	joints	on	the
/joint_states	topic



2.	 Use	the	robot_state_publisher	(which	we	encountered	when	building	and
debugging	our	TortoiseBot	model	in	“Modeling	the	Robot:	URDF”)	to	convert	the
/joint_states	messages	to	corresponding	/tf	messages.

Figure	17-1.	Visualization	of	the	TortoiseBot	with	missing	transforms

Let’s	check	what	is	already	being	published	on	/joint_states:

user@hostname$	rostopic	echo	/joint_states

header:

		seq:	110218

		stamp:

				secs:	1102

				nsecs:	357000000

		frame_id:	''

name:	['right_wheel_joint',	'left_wheel_joint']

position:	[0.5652265431822379,	3.7257917095603696]

velocity:	[]

effort:	[]

We	see	the	positions	of	the	right	and	left	wheel	joints	being	published	repeatedly,	but
nothing	about	the	caster	joint	or	front	wheel	joint.	Why	is	that?	Looking	back	at
tortoisebot.urdf,	notice	this	line,	within	the	configuration	of	the	differential	drive	plugin:

						<publishWheelJointState>true</publishWheelJointState>

That	line	tells	the	differential	drive	plugin	to	publish	/joint_states	messages	for	the	two



joints	that	it	is	controlling.	Fair	enough,	but	we	also	want	/joint_states	messages	for	the
other	two	joints,	which	are	passive.	Fortunately,	there’s	another	Gazebo	plugin	that	we	can
use	here:	the	joint	state	publisher.	In	tortoisebot.urdf,	add	the	URDF	code	from
Example	17-1,	which	loads	the	new	plugin	and	configures	it	to	publish	data	for	the	caster
and	front	wheel	joints.

Example	17-1.	Extra	URDF	code	to	load	the	joint	state	publisher	plugin	for	TortoiseBot
		<gazebo>

				<plugin	name="joint_state_publisher"

												filename="libgazebo_ros_joint_state_publisher.so">

						<jointName>front_caster_joint,	front_wheel_joint</jointName>

				</plugin>

		</gazebo>

Relaunch	tortoisebot.launch,	and	try	listening	in	on	/joint_states	again:

user@hostname$	rostopic	echo	/joint_states

header:

		seq:	10698

		stamp:

				secs:	53

				nsecs:	502000000

		frame_id:	''

name:	['left_wheel_joint',	'right_wheel_joint']

position:	[0.17974448092710826,	0.09370471036487604]

velocity:	[]

effort:	[]

---

header:

		seq:	10699

		stamp:

				secs:	53

				nsecs:	502000000

		frame_id:	''

name:	['front_caster_joint',	'front_wheel_joint']

position:	[0.2139682253512678,	0.6647502699540064]

velocity:	[]

effort:	[]

Now	we	can	see	position	data	for	all	four	joints.	It’s	arriving	interleaved	in	different
messages,	but	that’s	not	a	problem.	With	the	/joint_states	data	verified,	it’s	time	to	add
robot_state_publisher.	In	tortoisebot.launch,	add	the	following	XML	code:

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"

								type="robot_state_publisher"/>

Relaunch	again,	then	start	rviz.	The	result	will	be	similar	to	Figure	17-2,	which	looks
much	better.	The	wheels	and	caster	are	in	the	right	location,	because	now	rviz	is	receiving
the	required	transform	data	via	/tf	messages.



Figure	17-2.	Visualization	of	the	TortoiseBot	with	transforms

If	you’d	like,	you	can	inspect	the	messages	that	are	published	by	robot_state_publisher
in	the	usual	way:	rostopic	echo	/tf.	But	we	can	do	better	than	that,	by	asking	rviz	to
show	us	the	data.	In	Displays,	click	“Add”,	select	“TF”,	then	click	“OK”.	You	will	see	the
familiar	red/green/blue	axis	origins	pop	up,	with	labels	telling	you	their	names.	To	see
things	a	little	more	clearly,	let’s	make	the	robot	semitransparent:	in
Displays→RobotModel,	set	Alpha	to	0.5.	The	result	will	be	similar	to	Figure	17-3.

Now	that	we’ve	confirmed	that	transforms	are	being	handled	properly,	it’s	time	to	add	a
sensor	to	our	robot.



Figure	17-3.	Visualization	of	the	TortoiseBot	with	transforms	visualized



Adding	a	Laser	Sensor
Still	one	of	the	most	popular	sensors	for	mobile	robots,	laser	range-finders,	or	simply
lasers,	are	very	handy	devices.	A	laser	gives	you	a	pretty	accurate	view	of	the	world
around	you,	and	while	it’s	just	a	single	slice,	that	slice	turns	out	to	contain	plenty	of
information	for	a	robot	that	roams	around	a	world	with	lots	of	continuous	vertical
structure	(like	walls	and	doors).	In	this	section,	we’re	going	to	add	to	our	TortoiseBot	a
laser	similar	to	those	made	by	Hokuyo,	whose	sensors	are	widely	used	on	robots	today
(for	more	on	lasers,	refer	back	to	“Laser	scanners”).

If	we	were	building	a	physical	robot,	this	is	where	we	would	buy	the	sensor,	physically
bolt	it	to	the	robot,	then	hook	up	power	and	data.	Because	we’re	working	in	simulation,
we	can	just	edit	some	URDF.	First,	we	need	to	add	the	link	that	will	represent	the	sensor,
plus	a	joint	to	attach	it	to	the	robot.	The	URDF	code	in	Example	17-2	adds	a	small	cube
representing	the	laser,	attached	to	the	top	center	of	the	robot	chassis;	insert	this	code	in
your	tortoisebot.urdf.	Note	that,	as	with	other	parts	of	the	robot,	we	must	provide
reasonable	mass	and	inertia	values	for	the	laser;	without	that	information,	we	cannot
incorporate	the	laser	into	a	physics-based	simulation	like	Gazebo.

Example	17-2.	Extra	URDF	code	to	define	a	link	and	joint	for	the	laser	sensor
		<link	name="hokuyo_link">

				<collision>

						<origin	xyz="0	0	0"	rpy="0	0	0"/>

						<geometry>

								<box	size="0.1	0.1	0.1"/>

						</geometry>

				</collision>

				<visual>

						<origin	xyz="0	0	0"	rpy="0	0	0"/>

						<geometry>

								<box	size="0.1	0.1	0.1"/>

						</geometry>

				</visual>

				<inertial>

						<mass	value="1e-5"	/>

						<origin	xyz="0	0	0"	rpy="0	0	0"/>

						<inertia	ixx="1e-6"	ixy="0"	ixz="0"	iyy="1e-6"	iyz="0"	izz="1e-6"	/>

				</inertial>

		</link>

		<joint	name="hokuyo_joint"	type="fixed">

				<axis	xyz="0	1	0"	/>

				<origin	xyz="0	0	0.2"	rpy="0	0	0"/>

				<parent	link="base_link"/>

				<child	link="hokuyo_link"/>

		</joint>

You	can	confirm	the	result	by	launching	Gazebo	again	(and,	optionally,	rviz).	But	so	far,
all	we	did	was	add	the	physical	representation	of	the	laser;	we	haven’t	told	Gazebo	that	it
should	behave	like	a	laser.	To	do	that,	we	need	to	use	the	<sensor>	tag,	which	allows	us	to
define	and	configure	a	sensor.	Shown	in	Example	17-3	is	the	URDF	code	required	to
attach	a	laser	sensor	to	the	TortoiseBot.

Example	17-3.	Extra	URDF	code	to	define	a	laser	sensor
		<gazebo	reference="hokuyo_link">

				<sensor	type="gpu_ray"	name="hokuyo">

						<pose>0	0	0	0	0	0</pose>

						<visualize>false</visualize>



						<update_rate>40</update_rate>

						<ray>

								<scan>

										<horizontal>

												<samples>720</samples>

												<resolution>1</resolution>

												<min_angle>-1.570796</min_angle>

												<max_angle>1.570796</max_angle>

										</horizontal>

								</scan>

								<range>

										<min>0.10</min>

										<max>30.0</max>

										<resolution>0.01</resolution>

								</range>

						</ray>

						<plugin	name="gpu_laser"	filename="libgazebo_ros_gpu_laser.so">

								<topicName>/scan</topicName>

								<frameName>hokuyo_link</frameName>

						</plugin>

				</sensor>

		</gazebo>

Here	are	the	key	points	of	this	block	of	code:

First,	we	create	a	sensor	of	type	gpu_ray	(which	means	that	it	will	be	simulated	on
your	computer’s	GPU,	which	is	more	efficient	than	using	the	CPU),	and	attach	it	to	the
hokuyo_link	that	we	created	previously.

Then,	we	configure	the	sensor	to	behave	similarly	to	a	Hokuyo	laser:	publish	new
scans	at	40	Hz,	take	720	samples	per	scan	over	a	field	of	view	of	180	degrees,	and	scan
from	a	minimum	of	0.1	m	to	a	maximum	of	30	m.

Finally,	we	load	the	GPU	laser	Gazebo	plugin	and	configure	it	to	publish	data	from	the
laser	via	sensor_msgs/LaserScan	messages	on	the	scan	topic.	For	more	information
on	this	and	other	Gazebo	plugins,	check	the	gazebo_plugins	documentation.

Let’s	check	the	result	of	attaching	the	laser.	Add	the	code	from	Example	17-3	to	your
tortoise.urdf,	then	relaunch.	To	give	the	laser	something	to	look	at,	use	the	Gazebo	GUI	to
drop	a	cylinder	somewhere	in	front	of	the	robot,	as	shown	in	Figure	17-4.

Start	rviz	and	configure	it	to	show	the	laser	data:	in	Displays,	click	“Add”,	select
“LaserScan”,	and	click	“OK”.	Then,	in	Displays→LaserScan,	set	the	topic	to	/scan.	You
should	see	a	visualization	of	the	laser	scan	similar	to	Figure	17-5.

In	the	Gazebo	GUI,	trying	moving	the	cylinder	around,	and	inserting	and	moving	other
objects,	while	checking	the	effect	on	the	laser	scan	display	in	rviz.	You	can	also	try
driving	the	robot	from	the	keyboard	with	teleop_twist_keyboard,	as	we	did	in
“Simulation	in	Gazebo”.

http://wiki.ros.org/gazebo_plugins?distro=indigo


Figure	17-4.	Simulation	of	the	TortoiseBot	with	an	obstacle	for	the	laser	to	see



Figure	17-5.	Visualization	of	laser	scans	from	the	TortoiseBot

We	now	have	a	simulated	robot	with	good	transform	and	laser	data,	so	it’s	time	to	add
autonomous	navigation.



Configuring	the	Navigation	Stack
We’re	going	to	give	the	TortoiseBot	the	ability	to	autonomously	navigate	with	a	known
map	(i.e.,	we’re	not	going	to	build	a	map).	To	add	navigation	to	a	robot,	we	need	to	launch
three	new	nodes:

map_server,	to	provide	the	static	map	against	which	the	robot	will	localize	and	plan

amcl,	to	localize	the	robot	against	the	static	map

move_base,	to	handle	global	planning	and	local	control	for	the	robot

NOTE
The	theory	and	operation	of	the	ROS	navigation	stack	are	explained	in	Chapter	10;	in	this	section,	we’re
specifically	covering	the	process	of	configuring	navigation	for	use	on	a	new	robot.

To	run	map_server,	we	need	a	static	map.	Let’s	reuse	the	map	from	Chapter	9,	which	was
created	by	a	mobile	robot	roaming	around	in	a	reasonably	complex	office	building,	(see
Figure	17-6).

That	map	is	stored	in	the	mapping	package	that	we	created	previously.	To	have
map_server	provide	this	map,	add	the	following	XML	code	to	your	tortoisebot.launch
file,	inside	the	<launch>	block:

		<node	name="map_server"	pkg="map_server"	type="map_server"

								args="$(find	mapping)/maps/willow.yaml"/>

We	also	need	to	put	our	TortoiseBot	into	a	3D	simulation	world	that	matches	the	2D	map
we’re	using.	Fortunately,	there	is	just	such	a	world	in	the	gazebo_ros	package,	with	a
launch	file	ready	for	our	use.	In	tortoisebot.launch,	remove	the	line	that	includes
empty_world.launch	and	substitute	the	following	line,	which	instead	includes
willowgarage_world.launch:

		<include	file="$(find	gazebo_ros)/launch/willowgarage_world.launch"/>



Figure	17-6.	Map	of	an	office	building,	to	be	used	for	navigation

Now	that	we’re	using	a	nonempty	world,	we	care	about	where	the	TortoiseBot	gets	placed.
Previously,	when	spawning	a	TortoiseBot	with	spawn_model,	we	didn’t	specify	a	position,
so	the	robot	was	placed	at	the	origin	of	the	world.	Given	the	office	environment	provided
by	willowgarage_world.launch,	it	will	be	helpful	to	put	the	robot	in	an	open	area	where
we	can	easily	localize	it.	A	convenient	position,	relative	to	the	origin	of	the	world,	is	+8	m
in	x	and	–8	m	in	y.	To	place	the	robot	at	this	position,	remove	the	line	from
tortoisebot.launch	that	calls	spawn_model	and	replace	it	with	the	line	shown	here,	which
specifies	values	for	the	robot’s	x	and	y	position	(in	the	same	way,	you	can	also	specify	a	z
position	and/or	an	orientation):



		<node	name="spawn_urdf"	pkg="gazebo_ros"	type="spawn_model"

								args="-param	robot_description	-urdf	-model	tortoisebot	-x	8	-y	-8"	/>

To	check	that	the	world	is	loaded	with	the	robot	placed	correctly	within	it,	relaunch
tortoisebot.launch.	Use	the	Gazebo	GUI	to	change	your	point	of	view	to	get	a	result
similar	to	Figure	17-7,	in	which	you’re	looking	down	on	the	building	from	above,	with	the
robot	visible.



Figure	17-7.	TortoiseBot	in	an	office	building	in	Gazebo

Let’s	also	check	that	map_server	is	working.	Run	rviz	and	configure	it	to	show	the	map:
in	Displays,	click	“Add”,	select	“Map”,	and	click	“OK”.	Then,	in	Displays→Map,	set	the
topic	to	/map.	In	addition,	in	Displays→Global	Options,	change	the	fixed	frame	to	map.
You	should	see	the	2D	map	appear,	similar	to	Figure	17-8.



Figure	17-8.	The	static	map	displayed	in	rviz

With	our	robot	ready	to	go	in	a	simulated	office	building,	and	a	map_server	providing	a
matching	static	map,	we	need	to	launch	amcl,	which	will	localize	the	robot	within	the
building,	using	the	map.	While	amcl	is	extremely	configurable	and	generally	does	need	to
be	tuned	for	good	performance,	for	our	purposes,	we	can	use	the	example	configuration
for	differential-drive	robots,	which	is	provided	as	a	launch	file	in	the	amcl	package.	Add
the	following	line	to	your	tortoisebot.launch	file:

		<include	file="$(find	amcl)/examples/amcl_diff.launch"/>

Now	it’s	time	to	set	up	move_base.	As	explained	in	Chapter	10,	move_base	is	a	complex
node,	with	a	variety	of	opportunities	for	configuration.	Fortunately,	its	default
configuration	is	pretty	close	to	what	we	need,	leaving	just	a	handful	of	things	for	us	to
change.	First,	we	need	to	set	the	parameters	that	will	be	common	to	both	the	global	and
local	costmaps	that	are	used	by	move_base.	Create	a	file	called
costmap_common_params.yaml	and	insert	the	YAML	code	from	Example	17-4.

Example	17-4.	costmap_common_params.yaml
footprint:	[[0.35,	0.15],	[0.35,	-0.15],	[-0.35,	-0.15],	[-0.35,	0.15]]

observation_sources:	laser_scan_sensor

laser_scan_sensor:

		sensor_frame:	hokuyo_link

		data_type:	LaserScan

		topic:	scan



		marking:	true

		clearing:	true

We	first	define	the	shape	of	the	robot’s	footprint	as	a	rectangle	(you	can	add	more	points
to	make	a	different	2D	polygon),	using	the	outer	dimensions	of	the	chassis	plus	caster.
Then	we	define	our	laser	to	be	an	observation	source.	As	a	result,	data	published	on	the
scan	topic	will	be	used	to	update	the	costmaps,	both	inserting	obstacles	(marking)	and
asserting	free	space	(clearing).

With	the	common	parameters	established,	we	need	to	configure	the	global	and	local
costmaps	separately.	For	the	global	costmap,	create	a	file	called
global_costmap_params.yaml,	and	insert	the	YAML	code	from	Example	17-5.

Example	17-5.	global_costmap_params.yaml
global_costmap:

		global_frame:	map

		robot_base_frame:	base_link

		static_map:	true

We	tell	the	global	costmap	to	use	a	static	map	(to	be	provided	by	the	map_server)	and	that
it	should	do	its	reasoning	in	the	map	frame,	while	it	should	consider	the	canonical	frame	of
the	robot	to	be	base_link.

The	local	costmap	requires	only	a	slightly	different	configuration;	create	a	file	called
local_costmap_params.yaml,	and	insert	the	YAML	code	from	Example	17-6.

Example	17-6.	local_costmap_params.yaml
local_costmap:

		global_frame:	odom

		robot_base_frame:	base_link

		rolling_window:	true

Whereas	the	global	costmap	uses	a	large	static	map,	we	tell	the	local	costmap	to	use	a
small	rolling	window:	the	robot	always	remains	at	the	center	of	the	window,	with	obstacle
data	outside	the	window	being	discarded,	and	potentially	reobserved	later,	as	the	robot
moves.	We	also	tell	the	local	costmap	to	reason	in	the	odom	frame,	in	which	the	robot’s
pose	may	drift,	but	tends	to	vary	smoothly,	as	compared	to	the	map	frame,	in	which	the
pose	can	make	discrete	jumps.	These	two	differences	cause	the	local	costmap	to	be	more
suitable	for	local	obstacle	avoidance,	in	which	what’s	happening	right	now,	near	the	robot,
is	far	more	important	than	either	where	the	robot	thinks	it	is	in	the	world,	or	what	the	static
map	(which	might	be	outdated,	after	all)	says.

We	also	need	to	configure	the	base	local	planner,	which	does	the	actual	work	of	planning
paths	and	computing	control	commands.	Create	a	file	called
base_local_planner_params.yaml,	and	insert	the	YAML	code	from	Example	17-7.

Example	17-7.	base_local_planner_params.yaml
TrajectoryPlannerROS:

		holonomic_robot:	false

In	this	case,	we’re	setting	just	one	parameter,	to	tell	the	planner	that	the	TortoiseBot	is	not
holonomic	(because	it	is	differential-drive;	for	more	on	types	of	mobile	robots,	refer	back
to	“Actuation:	Mobile	Platform”).



With	all	the	configuration	established,	it’s	time	to	modify	the	launch	file	to	run	move_base.
Add	the	code	from	Example	17-8	to	your	tortoisebot.launch.

Example	17-8.	Extra	XML	code	to	launch	move_base
		<node	pkg="move_base"	type="move_base"	respawn="false"	name="move_base"

								output="screen">

				<rosparam	file="$(find	tortoisebot)/costmap_common_params.yaml"

														command="load"	ns="global_costmap"	/>

				<rosparam	file="$(find	tortoisebot)/costmap_common_params.yaml"

														command="load"	ns="local_costmap"	/>

				<rosparam	file="$(find	tortoisebot)/local_costmap_params.yaml"

														command="load"	/>

				<rosparam	file="$(find	tortoisebot)/global_costmap_params.yaml"

														command="load"	/>

				<rosparam	file="$(find	tortoisebot)/base_local_planner_params.yaml"

														command="load"	/>

		</node>

In	this	part	of	the	launch	file,	we	start	the	move_base	node	and	configure	it	with	the
parameters	from	the	YAML	files	that	we	just	created.	Note	that	we	load	the
costmap_common_params.yaml	file	twice,	once	in	the	global_costmap	namespace	and
again	in	the	local_costmap	namespace;	we	separated	those	parameters	exactly	because
we	would	require	them	in	two	places	and	didn’t	want	to	duplicate	any	code.

That’s	all	the	configuration	required;	let’s	get	this	robot	moving!



Using	rviz	to	Localize	and	Command	a	Navigating	Robot
With	all	the	changes	incorporated,	launch	tortoisebot.launch,	which	will	bring	up	a
TortoiseBot	in	the	simulated	office	building,	with	the	navigation	stack	ready	to	run.	As
described	in	Chapter	10,	we	need	to	give	amcl	a	reasonable	initial	estimate	of	the	robot’s
pose	within	the	map	that	corresponds	to	its	actual	location	in	the	building.	That’s	easiest	to
do	with	a	GUI,	so	also	start	rviz.	It	will	be	helpful	to	see	how	amcl’s	particle	filter
evolves	as	the	robot	moves,	so	go	ahead	and	enable	the	rviz	visualization	for	it:	in
Displays,	click	“Add”,	select	“PoseArray”,	click	“OK”,	then	set	the	topic	for	the	new
display	to	/particlecloud.

Work	with	the	points	of	view	in	Gazebo	and	rviz	until	you	have	them	roughly	aligned	and
can	match	where	the	TortoiseBot	is	in	the	Gazebo	world	to	where	it	should	be	in	the	rviz
map.	In	rviz,	click	the	“2D	Pose	Estimate”	button,	then	click	and	drag	in	the	map	to	set
the	robot’s	position	and	orientation,	as	shown	in	Figure	17-9.

Figure	17-9.	Setting	the	robot’s	initial	pose	in	rviz

In	rviz,	the	robot’s	pose	will	jump	to	approximately	the	pose	that	you	provided,	with	a
surrounding	cloud	of	arrows	showing	the	distribution	of	poses	being	tracked	by	amcl,	as
seen	in	Figure	17-10.	You	can	judge	the	goodness	of	the	estimate	by	checking	how	the
laser	scan	visualized	in	rviz	matches	with	the	map.	If	the	laser	scan	looks	badly



misaligned,	just	set	the	pose	again.	In	general,	you	should	provide	the	best	initial	pose	you
can,	but	it	doesn’t	have	to	be	perfect,	because	amcl	uses	a	fairly	robust	probabilistic
localization	algorithm.	Nothing	is	happening	yet	in	Gazebo;	we’re	just	telling	the	robot
where	it	is,	not	asking	it	to	move	anywhere.

Figure	17-10.	The	robot’s	pose	in	rviz	after	setting	the	initial	pose

With	the	robot	localized	in	the	map,	it’s	time	to	make	it	drive.	In	rviz,	click	the	“2D	Nav
Goal”	button,	then	click	and	drag	in	the	map	to	set	a	goal	pose	for	the	robot,	as	shown	in
Figure	17-11.	The	robot	will	start	moving	in	Gazebo,	and	rviz	will	be	updated	with	the
robot’s	estimated	pose	and	laser	scan	data,	as	shown	in	Figure	17-12.



Figure	17-11.	Setting	a	navigation	goal	pose	in	rviz

It	works;	hooray!	Now	it’s	time	to	experiment.	When	the	robot	reaches	the	goal	(or
before),	give	it	a	new	goal	somewhere	else.	Try	giving	a	new	pose	estimate	on	the	fly.	See
what	happens	when	you	give	it	a	very	bad	pose	estimate,	somewhere	else	in	the	map.	Give
it	a	navigation	goal	in	a	location	that’s	unreachable.



Figure	17-12.	The	robot	navigating	toward	its	goal,	with	the	red	localization	particle	cloud	converging	on	a	higher-
confidence	estimate



Summary
In	this	chapter,	we	started	with	a	working	simulation	model	of	a	mobile	robot	and	turned	it
into	an	autonomously	navigating	robot.	We	did	this	without	writing	any	procedural	code,
but	rather	by	providing	configuration	information	(via	XML	and	YAML).	That’s	the
power	of	ROS:	standard,	flexible	tools	like	robot_state_publisher,	amcl,	and
move_base	can	be	configured	and	combined	to	produce	useful	behavior	on	a	wide	variety
of	robots,	even	one	that	we	just	built	ourselves.

Of	course,	if	you	experiment	more	than	a	little	with	the	system	that	we	built,	you’ll	find
that	the	TortoiseBot’s	navigation	isn’t	perfect.	It	doesn’t	always	get	through	doorways,
sometimes	gets	lost	(becomes	mislocalized),	and	might	occasionally	get	stuck.	The	next
step	would	be	to	dig	into	the	documentation	for	the	navigation	stack	and	configure	it
carefully	for	our	robot.	Each	of	the	nodes	that	we’re	using	in	this	chapter	offers	extensive
configuration	options,	from	noise	models	in	amcl	to	acceleration	limits	and	planning
horizons	in	move_base.	The	defaults	and	example	configurations	that	we	relied	on	were
enough	to	produce	a	working	system,	but	each	robot	requires	some	parameter	tuning	to	get
really	solid	navigation	performance.





Chapter	18.	Your	Own	Robot	Arm

In	Chapters	16	and	17,	we	learned	how	to	add	ROS	support	for	a	new	mobile	robot,	from
modeling	and	simulation	to	autonomous	navigation.	Here	we’re	going	to	follow	the	same
pattern,	but	this	time	for	a	robot	arm,	or	manipulator.	We	learned	about	manipulation	in
general	and	how	to	use	an	existing	ROS-supported	robot	arm	in	Chapter	11.	Now	we’ll
walk	through	how	to	add	a	new	robot	arm,	including	configuring	MoveIt	to	perform	path
planning.



CougarBot
We’re	going	to	build	a	new	manipulator.	For	inspiration,	we	go	back	to	the	earliest
industrial	robot	arms,	which	were	produced	by	the	Unimation	company	in	the	1960s.
Founded	by	George	Devol	and	Jospeh	Engelberger,	Unimation	provided	robot	arms	first
to	General	Motors,	then	to	other	companies	and	industries,	forever	changing	the	nature	of
manufacturing	worldwide.	In	1966,	Engelberger	introduced	robots	to	the	general	public
when	he	appeared	on	the	Tonight	Show	with	one	of	his	machines,	demonstrating	for
Johnny	Carson	how	a	robot	could	pour	a	beer,	conduct	an	orchestra,	and	putt	a	golf	ball.
Shown	in	Figure	18-1	is	one	of	Unimation’s	later	models,	from	its	PUMA	(Programmable
Universal	Machine	for	Assembly)	series	of	robot	arms.



Figure	18-1.	An	example	of	Unimation’s	PUMA	series	of	robot	arms	(source:	Wikimedia	Commons)

In	honor	of	the	contributions	made	by	these	early	machines,	we’ll	create	a	similar	robot
arm,	called	CougarBot.	The	steps	to	create	the	CougarBot	robot	arm	are	very	similar	to
what	we	did	when	creating	the	TortoiseBot	mobile	base:

1.	 Decide	on	the	ROS	message	interface.

2.	 Write	drivers	for	the	robot’s	motors.

http://bit.ly/500_puma


3.	 Write	a	model	of	the	robot’s	physical	structure.

4.	 Extend	the	model	with	physical	properties	for	use	in	simulation	with	Gazebo.

5.	 Publish	coordinate	transform	data	via	tf	and	visualize	it	with	rviz.

6.	 Add	sensors,	with	driver	and	simulation	support.

7.	 Apply	standard	algorithms,	such	as	path	planning.



ROS	Message	Interface
We	saw	in	Chapter	16	that	the	standard	ROS	interface	to	a	mobile	robot	is	the
cmd_vel/odom	topic	pair,	which	allows	us	to	send	velocity	commands	and	receive
odometry	updates.	The	analogous	interface	for	a	robot	arm	is:

control_msgs/FollowJointTrajectory	(follow_joint_trajectory	action)

Command	a	trajectory	for	the	arm	and	monitor	its	progress.

sensor_msgs/JointState	(joint_states	topic)

Publish	the	current	state	of	each	joint	in	the	arm.

The	follow_joint_trajectory/joint_states	ROS	interface	allows	us	to,	in	a	portable
manner,	observe	and	command	a	robot	arm’s	joints.	Let’s	see	what	kind	of	goal	message
we	can	send	to	the	follow_joint_trajectory	action:

user@hostname$	rosmsg	show	control_msgs/FollowJointTrajectoryGoal

trajectory_msgs/JointTrajectory	trajectory

		std_msgs/Header	header

				uint32	seq

				time	stamp

				string	frame_id

		string[]	joint_names

		trajectory_msgs/JointTrajectoryPoint[]	points

				float64[]	positions

				float64[]	velocities

				float64[]	accelerations

				float64[]	effort

				duration	time_from_start

control_msgs/JointTolerance[]	path_tolerance

		string	name

		float64	position

		float64	velocity

		float64	acceleration

control_msgs/JointTolerance[]	goal_tolerance

		string	name

		float64	position

		float64	velocity

		float64	acceleration

duration	goal_time_tolerance

Wow,	there’s	a	lot	going	on	there.	It	looks	like	we	can	define	a	trajectory	by	any
combination	of	position,	velocity,	acceleration,	and	effort	targets,	along	with	time
parameterization	and	tolerances	to	obey	along	the	way.	Fortunately,	as	we’ll	see	later,	it’s
easy	to	construct	simple	trajectories	without	filling	out	every	field.

Let’s	look	at	the	joint_states	side	of	things:

user@hostname$	rosmsg	show	sensor_msgs/JointState

std_msgs/Header	header

		uint32	seq

		time	stamp

		string	frame_id

string[]	name

float64[]	position

float64[]	velocity

float64[]	effort

This	message	is	more	straightforward,	just	reporting	the	current	position,	velocity,	and



effort	of	each	joint.	We’ll	read	and	plot	this	data	later.



Hardware	Driver
To	implement	the	follow_joint_trajectory/joint_states	interface	for	a	physical
robot,	we	need	to	write	a	node	that	will	communicate	with	the	robot	hardware.	The	details
of	that	driver	node	will	depend	on	how	the	robot	works	and	how	we	can	communicate
with	it.	As	with	mobile	robots,	a	robot	arm	will	usually	offer	some	physical	interface,
often	serial	or	network,	along	with	a	protocol	for	exchanging	messages	over	that	interface.
Ideally,	we	can	find	a	reusable	library	that	implements	the	protocol,	which	we	can	wrap
into	a	ROS	node	where	we	will	handle	any	necessary	data	transformations,	such	as	unit
conversions.

We	can’t	provide	general-purpose	driver	code	for	controlling	a	robot	arm,	but	there	are
many	examples	within	the	ROS	ecosystem	to	look	at.	For	the	rest	of	this	chapter,	we’ll
proceed	under	the	assumption	that	you	have	written	a	driver	node	that	supports	the
follow_joint_trajectory/joint_states	interface,	and	discuss	the	other	steps	that	are
needed	for	ROS	integration.	The	following	steps,	starting	with	writing	a	model,	can	all	be
tried	out	in	simulation,	without	any	hardware	or	drivers.



Modeling	the	Robot:	URDF
Now	it’s	time	to	write	down	a	physical	model	of	the	CougarBot,	as	a	URDF	file.	This
model	will	be	used	by	rviz	to	visualize	the	robot,	by	Gazebo	to	simulate	it,	and	by	MoveIt
to	plan	motions	for	it.

Let’s	start	with	the	kinematics.	Looking	at	Figure	18-1,	we	see	that	the	defining
characteristics	of	this	robot	arm	are	that:

The	base	is	rigidly	attached	(e.g.,	bolted)	to	a	work	surface.

After	the	base,	the	first	joint	is	a	“hip”	that	swivels	the	“torso”	from	side	to	side.

The	next	three	joints	are	the	“shoulder,”	“elbow,”	and	“wrist,”	which	respectively
swing	the	“upper	arm,”	“lower	arm,”	and	“hand”	up	and	down.

So,	our	robot	model	will	need	five	links	(base,	torso,	upper	arm,	lower	arm,	and	hand)
connected	by	four	joints	(hip,	shoulder,	elbow,	and	wrist).	Let’s	start	modeling	it.	For
simplicity,	we’ll	use	a	combination	of	cylinders	(a	series	of	tubes,	if	you	will)	for	the
links;	more	sophisticated	models,	including	highly	detailed	surface	meshes,	could	be	used
to	improve	the	accuracy	and	visual	realism	of	the	model.

We’ll	start	with	the	base,	which	is	rigidly	attached	to	a	work	surface.	We	represent	this
arrangement	in	URDF	by	creating	a	special	link	called	world	and	connecting	the	base,
modeled	as	a	squat	cylinder,	to	it	with	a	fixed	joint.	This	URDF	code	is	shown	in
Example	18-1.

Example	18-1.	Model	of	the	CougarBot	base	link,	fixed	to	the	world
<?xml	version="1.0"?>

<robot	name="cougarbot">

		<link	name="world"/>

		<link	name="base_link">

				<visual>

						<geometry>

								<cylinder	length="0.05"	radius="0.1"/>

						</geometry>

						<material	name="silver">

								<color	rgba="0.75	0.75	0.75	1"/>

						</material>

						<origin	rpy="0	0	0"	xyz="0	0	0.025"/>

				</visual>

		</link>

		<joint	name="fixed"	type="fixed">

				<parent	link="world"/>

				<child	link="base_link"/>

		</joint>

</robot>

Note	that	we	used	the	<origin>	tag	in	the	<visual>	element	to	offset	in	z	the	point	of
reference	for	the	base	link	from	its	default	in	the	cylinder’s	center	to	its	bottom.	That
offset	will	make	it	easier	to	reason	about	where	to	attach	the	next	joint,	and	we’ll	do	the
same	thing	for	subsequent	links.	To	see	what	this	model	looks	like,	save	that	code	to	a	file
called	cougarbot.urdf,	and	use	roslauch	urdf_tutorial	display.launch	to	visualize	it:

user@hostname$	roslaunch	urdf_tutorial	display.launch	model:=cougarbot.urdf



You	should	see	rviz	pop	up,	showing	you	a	single	squat	cylinder,	similar	to	Figure	18-2.
You	can	see	the	effect	of	the	origin	offset	in	the	placement	of	the	coordinate	axes	at	the
bottom	of	the	cylinder.

Figure	18-2.	Visualization	of	the	CougarBot	base	link

With	the	base	link	in	place,	we’ll	add	the	torso	link	and	hip	joint,	as	shown	in	Example	18-
2.

Example	18-2.	URDF	code	to	add	the	CougarBot	torso	and	hip
		<link	name="torso">

				<visual>

						<geometry>

								<cylinder	length="0.5"	radius="0.05"/>

						</geometry>

						<material	name="silver">

								<color	rgba="0.75	0.75	0.75	1"/>

						</material>

						<origin	rpy="0	0	0"	xyz="0	0	0.25"/>

				</visual>

		</link>

		<joint	name="hip"	type="continuous">

				<axis	xyz="0	0	1"/>

				<parent	link="base_link"/>

				<child	link="torso"/>

				<origin	rpy="0	0	0"	xyz="0.0	0.0	0.05"/>

		</joint>

The	torso	is	a	tall,	thin	cylinder,	connected	to	the	base	via	the	hip,	which	is	a	continuous
joint	that	rotates	indefinitely	about	the	z-axis.	Add	this	code	to	cougarbot.urdf,	and	check



the	result	with	the	URDF	visualizer,	this	time	with	the	joint	control	GUI	enabled:

user@hostname$	roslaunch	urdf_tutorial	display.launch	model:=cougarbot.urdf	\

		gui:=True

The	hip	slider	in	the	GUI	will	swivel	the	torso	back	and	forth.	Next	are	the	upper	and
lower	arm.	We	can	model	each	as	a	thin	cylinder	with	the	same	radius	as	the	torso,	but
shorter.	From	the	robot’s	point	of	view,	the	upper	arm	is	connected	via	the	shoulder	to	the
right	(or	outside)	of	the	torso,	and	the	lower	arm	is	connected	via	the	elbow	to	the	left	(or
inside)	upper	arm.	The	URDF	code	for	these	new	arm	components	is	shown	in
Example	18-3	and	Example	18-4.

Example	18-3.	URDF	code	to	add	the	CougarBot	upper	arm	and	shoulder
		<link	name="upper_arm">

				<visual>

						<geometry>

								<cylinder	length="0.4"	radius="0.05"/>

						</geometry>

						<material	name="silver"/>

						<origin	rpy="0	0	0"	xyz="0	0	0.2"/>

				</visual>

		</link>

		<joint	name="shoulder"	type="continuous">

				<axis	xyz="0	1	0"/>

				<parent	link="torso"/>

				<child	link="upper_arm"/>

				<origin	rpy="0	1.5708	0"	xyz="0.0	-0.1	0.45"/>

		</joint>

Example	18-4.	URDF	code	to	add	the	CougarBot	lower	arm	and	elbow
		<link	name="lower_arm">

				<visual>

						<geometry>

								<cylinder	length="0.4"	radius="0.05"/>

						</geometry>

						<material	name="silver"/>

						<origin	rpy="0	0	0"	xyz="0	0	0.2"/>

				</visual>

		</link>

		<joint	name="elbow"	type="continuous">

				<axis	xyz="0	1	0"/>

				<parent	link="upper_arm"/>

				<child	link="lower_arm"/>

				<origin	rpy="0	0	0"	xyz="0.0	0.1	0.35"/>

		</joint>

Add	this	code	to	cougarbot.urdf.	The	last	kinematic	element	that	we	need	is	the	hand,
attached	via	the	wrist	to	the	end	of	the	lower	arm.	For	variety,	we’ll	model	the	hand	as	a
box,	as	shown	in	Example	18-5.

Example	18-5.	URDF	code	to	add	the	CougarBot	hand	and	wrist
		<link	name="hand">

				<visual>

						<geometry>

								<box	size="0.05	0.05	0.05"/>

						</geometry>

						<material	name="silver"/>

				</visual>

		</link>

		<joint	name="wrist"	type="continuous">

				<axis	xyz="0	1	0"/>

				<parent	link="lower_arm"/>

				<child	link="hand"/>

				<origin	rpy="0	0	0"	xyz="0.0	0.0	0.425"/>



		</joint>

After	adding	this	code	to	cougarbot.urdf,	visualize	it	again	via	roslauch	urdf_tutorial
display.launch	with	the	joint	control	GUI	enabled,	then	use	the	hip,	shoulder,	elbow,
and	wrist	sliders	to	move	the	robot	model	around,	as	shown	in	Figure	18-3.

Now	we’re	getting	somewhere;	that	looks	like	a	pretty	decent	robot	arm.	With	the
CougarBot’s	structure	settled,	let’s	get	this	robot	into	simulation.

Figure	18-3.	Visualization	of	the	CougarBot	base,	torso,	upper	arm,	lower	arm,	and	hand



Simulation	in	Gazebo
In	the	previous	section,	we	created	a	visual	kinematic	model	of	the	CougarBot,	capturing
the	sizes	and	positions	of	the	links	and	joints.	That’s	enough	information	to	visualize	the
robot	in	rviz,	but	to	simulate	it	in	Gazebo,	we	need	to	add	the	collision	geometry	and
inertial	properties	of	each	link.

To	add	collision	geometry,	given	the	simplicity	of	our	visual	model,	we	just	duplicate	the
visual	geometry.	Go	through	your	cougarbot.urdf,	adding	for	each	<visual>/<geometry>
tag	a	sibling	<collision>/<geometry>	tag	with	the	same	shape,	size,	and	origin.	For
example,	the	base_link	with	collision	information	would	look	like	Example	18-6.	Note
that	you	don’t	need	to	add	a	<material>	tag	for	the	collision	body.

Example	18-6.	Code	for	the	CougarBot	base,	with	collision	information
		<link	name="base_link">

				<visual>

						<geometry>

								<cylinder	length="0.05"	radius="0.1"/>

						</geometry>

						<material	name="silver">

								<color	rgba="0.75	0.75	0.75	1"/>

						</material>

						<origin	rpy="0	0	0"	xyz="0	0	0.025"/>

				</visual>

				<collision>

						<geometry>

								<cylinder	length="0.05"	radius="0.1"/>

						</geometry>

						<origin	rpy="0	0	0"	xyz="0	0	0.025"/>

				</collision>

		</link>

To	add	inertial	data,	we	need	to	determine	the	mass	properties	of	each	link.	To	keep	things
simple,	we’ll	give	each	link	a	mass	of	1.0	kg.	For	help	with	computing	inertia	matrices,
we	can	consult	some	well-known	formulas	for	computing	moments	of	inertia	for	objects
of	various	shapes,	including	boxes	and	cylinders.	Using	those	formulas,	we	computed	the
inertia	values	shown	in	Example	18-7	for	the	base,	in	Example	18-8	for	the	torso,	in
Example	18-9	for	the	upper	arm	and	lower	arm	(they’re	identical),	and	in	Example	18-10
for	the	hand.	Add	each	block	of	XML	inside	the	corresponding	link(s)	in	cougarbot.urdf.

Example	18-7.	CougarBot	inertial	data	for	the	base
				<inertial>

						<mass	value="1.0"/>

						<origin	rpy="0	0	0"	xyz="0	0	0.025"/>

						<inertia	ixx="0.0027"	iyy="0.0027"	izz="0.005"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Example	18-8.	CougarBot	inertial	data	for	the	torso
				<inertial>

						<mass	value="1.0"/>

						<origin	rpy="0	0	0"	xyz="0	0	0.25"/>

						<inertia	ixx="0.02146"	iyy="0.02146"	izz="0.00125"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Example	18-9.	CougarBot	inertial	data	for	the	upper	arm	and	lower	arm
				<inertial>

						<mass	value="1.0"/>

http://bit.ly/moments_of_inertia


						<origin	rpy="0	0	0"	xyz="0	0	0.2"/>

						<inertia	ixx="0.01396"	iyy="0.01396"	izz="0.00125"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Example	18-10.	CougarBot	inertial	data	for	the	hand
				<inertial>

						<mass	value="1.0"/>

						<inertia	ixx="0.00042"	iyy="0.00042"	izz="0.00042"

															ixy="0"	ixz="0"	iyz="0"/>

				</inertial>

Note	that,	in	every	link	for	which	we	used	the	<origin>	tag	to	offset	the	point	of	reference
for	the	<visual>	and	<collision>	elements,	we	used	the	same	<origin>	tag	for	the
<inertial>	element.	In	this	way,	we	ensure	that	the	visual,	kinematic,	and	dynamic
representations	of	the	robot	are	consistent,	which	suits	our	purposes	with	the	CougarBot
(there	are	situations	in	which	you	might	want	them	to	diverge	from	each	other).

At	this	point,	we	need	to	organize	our	code	into	a	ROS	package,	which	we’ll	call
cougarbot.	Create	a	directory	in	your	workspace	called	cougarbot,	add	an	appropriate
package.xml	file,	then	move	your	cougarbot.urdf	file	in	there.	Now	we’re	going	to	add	a
roslaunch	file	that	launches	Gazebo	with	a	CougarBot	in	it.	The	roslaunch	code	is
shown	in	Example	18-11.

Example	18-11.	cougarbot.launch	file	to	bring	up	Gazebo	with	a	CougarBot	model
<launch>

		<!--	Load	the	CougarBot	URDF	model	into	the	parameter	server	-->

		<param	name="robot_description"	textfile="$(find	cougarbot)/cougarbot.urdf"	/>

		<!--	Start	Gazebo	with	an	empty	world	-->

		<include	file="$(find	gazebo_ros)/launch/empty_world.launch"/>

		<!--	Spawn	a	CougarBot	in	Gazebo,	taking	the	description	from	the

							parameter	server	-->

		<node	name="spawn_urdf"	pkg="gazebo_ros"	type="spawn_model"

								args="-param	robot_description	-urdf	-model	cougarbot"	/>

</launch>

In	this	launch	file,	we	load	the	URDF	file	into	the	parameter	server	as
/robot_description,	then	use	a	helper	launch	file	from	the	gazebo_ros	package	to	run
Gazebo	with	an	empty	world.	With	the	model	data	loaded	into	the	parameter	server	and
Gazebo	running,	we	use	the	helper	tool	spawn_model,	also	from	the	gazebo_ros	package,
to	ask	Gazebo	to	spawn	an	instance	of	the	CougarBot,	reading	URDF	data	from	the
/robot_description	parameter.

Save	that	file	as	cougarbot/cougarbot.launch	and	give	it	a	try:

user@hostname$	roslaunch	cougarbot	cougarbot.launch

You	should	see	Gazebo	pop	up,	with	a	CougarBot,	similar	to	Figure	18-4.	Hooray!



Figure	18-4.	Gazebo	simulating	the	CougarBot

However,	the	robot	is	just	lying	there,	collapsed.	What	happened?	We	asked	Gazebo	to
simulate	a	robot	arm	having	links	with	mass	connected	to	joints.	But	we	didn’t	say
anything	about	how	to	control	those	joints.	In	the	absence	of	any	torque	being	applied	to
the	joints,	as	a	motor	would	do,	the	robot	is	limp,	with	the	links	falling	under	the	force	of
gravity	like	a	in	rag	doll	(but	obeying	the	kinematic	and	dynamic	properties	of	the	model).

Recall	from	“Simulation	in	Gazebo”	that	for	the	TortoiseBot	we	added	to	the	model	a
Gazebo	plugin	to	support	differential	drive	control	via	the	cmd_vel/odom	interface.
Obviously,	differential	drive	isn’t	right	for	our	robot	arm.	For	the	CougarBot,	we	need
something	to	help	us	control	all	its	joints	via	the	follow_joint_​
tra⁠jec⁠tory/joint_states	interface.	For	this	purpose,	we’re	going	to	use	two	plugins:
the	ros_control	plugin	will	accept	new	desired	trajectories	via	follow_joint_​
tra⁠jec⁠tory,	while	the	ros_joint_state_publisher	will	publish	the	joint_states
data.

To	make	the	joints	move,	we	need	the	ros_control	plugin.	Adding	this	plugin	takes	some
effort.	To	understand	why,	it’s	important	to	know	that	all	the	control	code	we’re	going	to
use	in	simulation	is	also	used	with	real	hardware.	To	make	this	work,	the	controllers	and
supporting	infrastructure	require	extra	abstraction	and	configuration,	both	of	which	add
complexity.	In	exchange	for	the	additional	complexity,	we	get	the	ability	to	run	the	same
code	in	simulation	and	on	real	robots,	which	is	a	great	trade-off	to	make.



First,	for	every	joint	in	our	URDF	model,	we	need	to	define	a	matching	transmission.	The
transmission	models	what	happens	between	the	output	of	a	motor	and	the	joint	to	which
the	motor	is	attached.	Transmissions	often	involve	a	gear	reduction	to	account	for	the
mechanical	gearbox	that	is	used	to	increase	the	torque	available	from	an	electric	motor,
which	is	naturally	a	high-speed,	low-torque	device.	A	transmission	can	also	include	more
complex	phenomena,	such	as	mechanical	coupling	among	joints.	Shown	in	Example	18-
12	is	the	code	to	define	a	simple	transmission	for	the	CougarBot’s	hip	joint.	To	learn	more
about	this	and	other	types	of	transmission,	consult	the	documentation	for	URDF.

Example	18-12.	URDF	code	to	add	a	transmission	for	the	hip	joint
		<transmission	name="tran0">

				<type>transmission_interface/SimpleTransmission</type>

				<joint	name="hip">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

				</joint>

				<actuator	name="motor0">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

						<mechanicalReduction>1</mechanicalReduction>

				</actuator>

		</transmission>

This	block	of	code	defines	what	is	essentially	an	empty	transmission,	with	a	gear
reduction	of	1.	It’s	unrealistic,	but	will	meet	our	needs	for	simulating	a	CougarBot.	Add
that	URDF	code	to	your	model,	anywhere	inside	the	<robot>	tag.	Then	add	the	analogous
transmissions	for	the	other	three	joints,	shown	in	Example	18-13.

Example	18-13.	URDF	code	to	add	transmissions	for	the	shoulder,	elbow,	and	wrist
		<transmission	name="tran1">

				<type>transmission_interface/SimpleTransmission</type>

				<joint	name="shoulder">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

				</joint>

				<actuator	name="motor1">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

						<mechanicalReduction>1</mechanicalReduction>

				</actuator>

		</transmission>

		<transmission	name="tran2">

				<type>transmission_interface/SimpleTransmission</type>

				<joint	name="elbow">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

				</joint>

				<actuator	name="motor2">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

						<mechanicalReduction>1</mechanicalReduction>

				</actuator>

		</transmission>

		<transmission	name="tran3">

				<type>transmission_interface/SimpleTransmission</type>

				<joint	name="wrist">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

				</joint>

				<actuator	name="motor3">

						<hardwareInterface>PositionJointInterface</hardwareInterface>

						<mechanicalReduction>1</mechanicalReduction>

				</actuator>

		</transmission>

With	the	transmissions	defined,	we	can	add	the	ros_control	plugin,	as	shown	in
Example	18-14

Example	18-14.	URDF	code	to	load	the	ros_control	plugin
		<gazebo>

http://wiki.ros.org/urdf/XML/Transmission?distro=indigo


				<plugin	name="control"	filename="libgazebo_ros_control.so"/>

		</gazebo>

Add	that	code	to	your	cougarbot.urdf.	Next	we’ll	choose	which	of	the	controllers	offered
by	ros_control	we’re	going	to	use	and	configure	it.	For	our	purposes,	we	need	something
that	will	accept	trajectories	of	joint	positions	(as	opposed	to,	say,	velocities,	accelerations,
or	other	goals	or	constraints).	Create	a	new	file	in	your	cougarbot	package,	call	it
controllers.yaml,	and	insert	the	YAML	code	shown	in	Example	18-15.

Example	18-15.	YAML	configuration	of	a	controller	for	CougarBot
arm_controller:

		type:	"position_controllers/JointTrajectoryController"

		joints:

				-	hip

				-	shoulder

				-	elbow

				-	wrist

This	file	defines	a	new	controller,	called	arm_controller,	of	type	position_​
con⁠trol⁠lers/JointTrajectoryController,	that	controls	all	of	of	our	robot’s	joints.
The	following	is	the	XML	code	required	to	load	the	contents	of	this	file	via	rosparam	into
the	ROS	parameter	server,	where	other	tools	can	access	it:

		<rosparam	file="$(find	cougarbot)/controllers.yaml"	command="load"/>

Add	that	code	to	your	cougarbot.launch.	Now	we	actually	need	to	spawn	our	newly
configured	controller.	By	default,	ros_control	starts	without	any	controllers	running,
waiting	to	be	told	what	to	do.	Here	is	the	XML	code	required	to	use	the
controller_manager/spawner	tool	to	spawn	our	arm_controller:

		<node	name="controller_spawner"	pkg="controller_manager"	type="spawner"

								args="arm_controller"/>

Add	that	code	to	your	cougarbot.launch.	Now,	let’s	get	this	robot	moving!	Launch	the
simulation	again.	You	should	get	a	different	result	this	time,	similar	to	Figure	18-5.



Figure	18-5.	Gazebo	simulating	the	CougarBot,	with	the	controller	running

The	robot	is	now	no	longer	just	lying	there,	but	rather	is	maintaining	the	configuration	that
we	specified	when	we	built	the	model.	That’s	the	result	of	our	new	controller,	which	by
default	will	try	to	keep	each	joint	at	its	zero	position.	We	can	tell	it	to	go	somewhere	else
by	sending	a	new	command	to	the	follow_joint_trajectory	interface.	How	can	we	do
that?	Let’s	start	by	looking	at	the	list	of	available	topics:

user@hostname$	rostopic	list

/arm_controller/command

/arm_controller/follow_joint_trajectory/cancel

/arm_controller/follow_joint_trajectory/feedback

/arm_controller/follow_joint_trajectory/goal

/arm_controller/follow_joint_trajectory/result

/arm_controller/follow_joint_trajectory/status

/arm_controller/state

/clock

/gazebo/link_states

/gazebo/model_states

/gazebo/parameter_descriptions

/gazebo/parameter_updates

/gazebo/set_link_state

/gazebo/set_model_state

/rosout

/rosout_agg

We	can	see	that	the	/arm_controller	namespace	contains	several	topics	that	look
interesting.	The	follow_joint_trajectory	namespace	contains	the	topics	that	make	up
the	action	interface,	which	is	how	the	controller	is	normally	used.	But	it	also	offers	a
command	topic;	let’s	get	more	information	on	that	one:

user@hostname$	rostopic	info	/arm_controller/command



Type:	trajectory_msgs/JointTrajectory

Publishers:	None

Subscribers:

	*	/gazebo	(http://rossum:42185/)

We	saw	the	trajectory_msgs/JointTrajectory	message	in	“ROS	Message	Interface”
when	looking	at	the	type	of	goal	accepted	by	the	follow_joint_​tra⁠jec⁠tory	action.
Now	let’s	try	to	construct	and	publish	a	message	of	that	type.	The	minimum	information
that	we	need	to	provide	is	the	ordered	list	of	joint	names	that	we	want	to	control,	and	a
trajectory	containing	at	least	one	point.	Each	trajectory	point	needs	to	define	a	position	for
each	joint,	along	with	a	target	time	(measured	from	the	start	of	execution	of	the	trajectory)
by	which	that	point	should	be	reached.	That’s	not	so	much	data,	so	we	can	publish	it	via
rostopic	at	the	command	line,	telling	each	joint	to	move	to	a	new	angle,	and	get	there	in
1	second:

user@hostname$	rostopic	pub	/arm_controller/command	\

		trajectory_msgs/JointTrajectory	\

		'{joint_names:	["hip",	"shoulder",	"elbow",	"wrist"],	points:	\

		[{positions:	[0.1,	-0.5,	0.5,	0.75],	time_from_start:	[1.0,	0.0]}]}'	-1

You	should	see	the	robot	arm	smoothly	move	to	the	new	configuration,	as	shown	in
Figure	18-6.	Controlling	a	robot	like	this	is	similar	to	how	an	animator	might	create	key
frames	for	a	character.	We	specify	the	configuration	that	the	robot	should	achieve	and	let
something	else	(in	our	case,	the	controller	that	we	attached	to	the	arm)	fill	in	the
intervening	details.

Figure	18-6.	CougarBot	arm	moved	to	a	new	configuration



Try	modifying	the	rostopic	call	to	send	the	robot	to	other	configurations,	as	well	as
adding	more	points	to	form	a	longer	trajectory.	Interesting,	but	that	quickly	gets	tedious.
Typing	out	lists	of	joint	angles	at	the	command	line	is	not	a	great	way	to	control	a	robot
arm.	We	need	to	continue	working	on	our	CougarBot	until	it’s	planning	paths	for	itself.



Verifying	Transforms
In	the	previous	section,	we	used	the	ros_control	plugin	to	provide	the	fol⁠low_​
joint_trajectory	interface	to	control	the	arm.	Now	we’ll	use	the	ros_​
joint_state_publisher	plugin	to	provide	the	joint_states	interface	to	send	out	the
current	state	of	the	arm.

Adding	the	ros_joint_state_publisher	plugin	is	easy.	We	just	need	to	tell	it	the	list	of
joints	for	which	it	should	publish	state	data.	In	our	case,	we	want	all	of	them:	hip,
shoulder,	elbow,	and	wrist.	Add	the	code	in	Example	18-16	to	your	cougarbot.urdf,
anywhere	inside	the	<robot>	tag.

Example	18-16.	Plugin	to	publish	joint	state	data
		<gazebo>

				<plugin	name="joint_state_publisher"

												filename="libgazebo_ros_joint_state_publisher.so">

						<jointName>hip,	shoulder,	elbow,	wrist</jointName>

				</plugin>

		</gazebo>

To	check	that	the	plugin	is	working,	launch	cougarbot.launch,	then	echo	the
joint_states	data	to	the	console:

user@hostname$	rostopic	echo	/joint_states

You	should	see	a	stream	of	messages	showing	you	the	position	(angle)	of	each	joint:

header:

		seq:	2946

		stamp:

				secs:	29

				nsecs:	632000000

		frame_id:	''

name:	['hip',	'shoulder',	'elbow',	'wrist']

position:	[0.0002283149969581899,	2.4271024408939468e-05,	\

											-6.677035226587691e-05,	1.7216278225262727e-06]

velocity:	[]

effort:	[]

The	position	values	should	be	near	zero,	because	that’s	where	the	controller	is	trying	to
keep	the	arm.	They	might	change	slightly	over	time,	much	like	a	in	real	robot	that	is
fighting	against	gravity	to	hold	its	position.

Let’s	go	ahead	and	add	the	familiar	robot_state_publisher,	which	will	do	forward
kinematics	on	the	joint_states	messages	and	robot	model	to	produce	tf	messages.	Here
is	the	XML	code	to	launch	the	robot_state_publisher:

		<node	name="robot_state_publisher"	pkg="robot_state_publisher"

								type="robot_state_publisher"/>

Add	that	code	to	your	cougarbot.launch	and	relaunch	it.	Now	we’re	ready	to	visualize	the
state	of	the	robot,	so	also	launch	rviz.	In	rviz,	choose	base_link	as	your	“fixed	frame”,
and	be	sure	to	add	the	RobotModel	and	TF	displays.	You	should	see	the	robot,	with	its	TF



frames	visualized,	similar	to	Figure	18-7.

Figure	18-7.	Simulated	CougarBot	arm,	visualized	live	in	rviz

To	check	that	everything	is	working,	let’s	also	plot	the	joint_states	data	using	rqt_plot
(see	also	“Plotting	Data:	rqt_plot”):

user@hostname$	rqt_plot	'/joint_states/position[0]'	'/joint_states/position[1]'	\

		'/joint_states/position[2]'	'/joint_states/position[3]'

You	should	see	a	live	combined	plot	of	the	four	joint	positions,	all	near	zero.	Now	let’s
send	that	simple	trajectory	again:

user@hostname$	rostopic	pub	/arm_controller/command	\

		trajectory_msgs/JointTrajectory	\

		'{joint_names:	["hip",	"shoulder",	"elbow",	"wrist"],	points:	\

		[{positions:	[0.1,	-0.5,	0.5,	0.75],	time_from_start:	[1.0,	0.0]}]}	-1'	

You	should	see	the	robot	model	move	to	the	new	configuration	in	rviz,	similar	to
Figure	18-8.

And,	if	you	were	paying	attention	to	the	rqt_plot	window,	you	should	have	seen	the	joint
angles	diverge	from	zero	to	their	new	respective	goals,	similar	to	Figure	18-9.



Figure	18-8.	Simulated	CougarBot	arm,	visualized	live	in	rviz

Now	that	we	have	our	CougarBot	supporting	the
follow_joint_trajectory/joint_states	interface,	we	can	put	MoveIt	on	top	to	do	path
planning.



Figure	18-9.	Plot	of	CougarBot	joint	angles	during	trajectory	execution



Configuring	MoveIt
MoveIt	is	a	library	of	tools	for	motion	planning	and	control.	Though	similar	in	spirit	to	the
navigation	stack,	which	we	configured	for	the	TortoiseBot	in	“Configuring	the	Navigation
Stack”,	MoveIt	is	a	more	complex	system,	with	extensive	opportunities	for	configuration.
To	help	with	configuration,	MoveIt	provides	a	graphical	tool	called	the	Setup	Assistant.
Let’s	start	to	configure	MoveIt	for	CougarBot	by	launching	the	Setup	Assistant:

user@hostname$	roslaunch	moveit_setup_assistant	setup_assistant.launch

You	should	see	an	introductory	screen	similar	to	Figure	18-10.

Click	“Create	New	MoveIt	Configuration	Package,”	then	browse	to	your	cougarbot.urdf
file,	and	click	“Load	Files.”	You	should	see	a	model	of	your	robot	appear	on	the	right	side
of	the	Setup	Assistant	window,	similar	to	Figure	18-11.

Figure	18-10.	The	MoveIt	Setup	Assistant



Figure	18-11.	The	CougarBot	model	loaded	into	the	MoveIt	Setup	Assistant

Now	we’re	going	to	work	our	way	through	the	sections	on	the	lefthand	side	of	the	Setup
Assistant	window,	clicking	on	each	one:

Self-Collisions

In	this	section,	click	the	“Regenerate	Default	Collision	Matrix”	button.	MoveIt	will
examine	the	robot	model	and	also	randomly	sample	many	possible	configurations	to
help	decide	when	collision	checks	should	and	should	not	be	performed.	Collision
checking	is	very	expensive,	so	it’s	important	to	be	able	to	avoid	it	when	possible.

Virtual	Joints

Nothing	to	do	here.

Planning	Groups

We	need	to	create	one	planning	group,	which	will	cover	the	entire	arm.	Click	“Add
Group.”	For	“Group	Name,”	fill	in	“arm”	(really,	any	name	will	do).	For	“Kinematic
Solver,”	select	“kdl_kinematics_plugin/KDLKinematicsPlugin.”	This	plugin
provides	a	generic	inverse	kinematics	solver,	which	isn’t	the	most	efficient	way	to	do
things,	but	it	will	work	fine	for	our	purposes.	Click	“Add	Joints,”	then	select	and	add
all	five	joints,	and	click	“Save.”	You	should	see	a	result	similar	to	Figure	18-12.



Figure	18-12.	The	Planning	Groups	configuration	step	in	the	MoveIt	Setup	Assistant

Robot	Poses

Nothing	to	do	here.

End	Effectors

We	need	to	tell	MoveIt	which	link	of	the	robot	we’ll	be	planning	for;	let’s	use	the
hand	link.	In	“End	Effector	Name,”	fill	in	“hand”	(again,	any	name	will	do).	In
“Parent	Link,”	select	“hand,”	then	click	“Save.”

Passive	Joints

Nothing	to	do	here.

Configuration	Files

We	need	to	tell	MoveIt	where	to	create	a	new	ROS	package	that	contains	the	new
configuration	files.	In	“Configuration	Package	Save	Path,”	provide	a	path	to	a	new
directory	called	cougarbot_moveit_config	that	is	a	sibling	to	your	existing	cougarbot
directory,	then	click	“Generate	Package.”

That’s	it	for	the	Setup	Assistant;	quit	it	by	clicking	“Exit	Setup	Assistant.”	Now	we	have	a
new	package,	called	cougarbot_moveit_config,	which	contains	various	launch	and
YAML	files.	Trying	out	all	the	launch	files	is	outside	the	scope	of	this	book;	consult	the
MoveIt	documentation	for	a	complete	introduction	to	the	generated	files.

We’ll	focus	our	attention	on	what’s	required	to	get	MoveIt	controlling	the	CougarBot.	The
last	thing	we	need	to	tell	MoveIt	is	how	our	arm	controller	is	configured.	In

http://moveit.ros.org/


cougarbot_moveit_config,	create	a	new	file,	config/controller.yaml,	and	insert	the	YAML
code	shown	in	Example	18-17.

Example	18-17.	YAML	code	to	configure	MoveIt	to	use	the	CougarBot	arm	controller
controller_manager_ns:	/

controller_list:

		-	name:	arm_controller

				action_ns:	follow_joint_trajectory

				type:	FollowJointTrajectory

				joints:

						-	hip

						-	shoulder

						-	elbow

						-	wrist

In	this	file,	we’re	telling	MoveIt	where	to	find	the	follow_joint_trajectory	action
server	that’s	being	provided	by	the	ros_control	plugin,	as	well	as	which	joints	should	be
controlled.	There’s	one	more	file	to	edit:	in	cougarbot_moveit_config,	open
launch/cougarbot_moveit_controller_manager.launch.xml,	which	was	autogenerated
empty	by	the	Setup	Assistant,	and	insert	the	XML	code	shown	in	Example	18-18.

Example	18-18.	Extra	XML	code	to	load	MoveIt’s	controller	configuration
<launch>

		<param	name="moveit_controller_manager"

									value="moveit_simple_controller_manager/MoveItSimpleControllerManager"/>

		<param	name="controller_manager_name"	value="/"	/>

		<param	name="use_controller_manager"	value="true"	/>

		<rosparam	file="$(find	cougarbot_moveit_config)/config/controllers.yaml"/>

</launch>

This	file	sets	several	parameters,	including	loading	the	contents	of	the	controllers.yaml	file
that	we	just	created.

That’s	it;	MoveIt	is	configured!	Now,	how	do	we	actually	use	it?



Using	rviz	to	Send	Goals
Launch	the	CougarBot	simulation	as	usual:

user@hostname$	roslaunch	cougarbot	cougarbot.launch

Also	launch	MoveIt,	using	the	configuration	that	we	just	created:

user@hostname$	roslaunch	cougarbot_moveit_config	move_group.launch

Now	the	simulated	robot	is	running,	with	MoveIt	ready	to	accept	goal	poses	and	do	path
planning.	We	just	need	to	bring	up	rviz	in	a?	with	a?	suitable	configuration	to	send	those
goals.	Fortunately,	MoveIt	provided	us	with	such	a	configuration.	Launch	rviz	like	so:

user@hostname$	roslaunch	cougarbot_moveit_config	moveit_rviz.launch	config:=True

Note	that	you	could	combine	these	three	steps	into	one	by	writing	a	new	launch	file,	called
all.launch,	as	shown	in	Example	18-19.

Example	18-19.	One	launch	file	to	rule	them	all
<launch>

		<include	file="$(find	cougarbot)/cougarbot.launch"/>

		<include	file="$(find	cougarbot_moveit_config)/launch/move_group.launch"/>

		<include	file="$(find	cougarbot_moveit_config)/launch/moveit_rviz.launch">

				<arg	name="config"	value="True"/>

		</include>

</launch>

Whichever	way	you	launch	everything,	you	should	see	rviz	with	some	new	features
provided	by	the	MotionPlanning	display,	as	shown	in	Figure	18-13



Figure	18-13.	CougarBot	visualized	in	rviz	with	the	MotionPlanning	display

There	is	a	lot	that	you	can	do	with	this	interface.	We’ll	just	cover	basic	planning	and
execution.	First,	in	the	Motion	Planning→Context	window,	select	“Allow	Approximate	IK
Solutions.”	We	do	this	because	our	robot’s	one-degree-of-freedom	wrist	makes	it	difficult
to	interactively	specify	a	strictly	reachable	pose.	For	this	reason,	robot	arms	usually	have	a
two-	or	three-degrees-of-freedom	wrist.

Click	on	Motion	Planning→Planning.	Now	we’re	ready	to	start	playing	with	the	robot.	In
the	rviz	window,	the	multicolored	marker	attached	to	the	robot’s	hand	allows	you	to
translate	and	rotate	the	hand	in	space.	As	you	do	that,	the	inverse	kinematics	(IK)	solver	is
trying	to	find	a	configuration	of	the	robot	arm	that	will	put	the	hand	where	you	want	it.
The	configuration	that	it	finds	will	be	visualized	for	your	review,	as	shown	in	Figure	18-
14.



Figure	18-14.	Using	rviz	to	define	a	goal	configuration

With	the	goal	configuration	selected,	click	“Plan.”	You	should	see	a	planned	trajectory
from	start	to	goal	being	played	back	repeatedly	in	rviz.	So	far,	nothing	is	moving	in
Gazebo;	we’re	just	visualizing	the	trajectory	in	rviz.	To	execute	the	trajectory	on	the
robot,	click	“Execute.”	The	robot	should	move	in	Gazebo,	following	the	trajectory
promised	by	rviz.

Try	other	goal	configurations	by	dragging	the	hand	marker	around.	If	you’re	having
trouble	getting	to	a	configuration,	remember	to	use	both	the	rotation	and	translation
handles	on	the	hand	marker.	It	might	help	to	imagine	what	combination	of	joint	rotations
would	be	required	to	reach	a	configuration	that	you	have	in	mind.	You	can	also	try	random
configurations:	under	“Select	Goal	State,”	select	“<random	valid>”	then	click	“Update.”
Repeat	this	procedure	until	you	find	a	goal	configuration	that	you	like,	then	click	“Plan
and	Execute”	to	move	the	robot	there.



Summary
In	this	chapter,	we	learned	how	to	build	a	model	of	a	robot	arm	from	scratch,	including	all
the	details	need	to	visualize	and	simulate	it.	We	further	attached	a	controller	to	the	arm,
then	configured	MoveIt	to	plan	and	execute	trajectories	on	the	arm	based	on	goal	poses	for
the	robot’s	hand	—	and	we	were	able	to	do	all	of	that	by	specifying	and	configuring
models	in	XML	and	YAML,	without	doing	any	procedural	programming.	It’s	a	good
demonstration	of	how	Gazebo,	rviz,	MoveIt,	and	other	ROS	tools	can	be	combined	to
provide	significant	power	to	the	developer	of	a	robot	system.

Of	course,	our	CougarBot	is	not	ready	to	ship	yet.	For	a	start,	we	haven’t	added	any
sensors.	Path	planning	is	good,	but	it’s	far	more	useful	when	you’re	using	it	to	avoid
running	into	obstacles.	MoveIt	supports	obstacle-aware	path	planning;	we	just	need	to	add
a	sensor	(probably	a	Kinect-like	depth	camera)	to	the	CougarBot	model,	then	extend	our
MoveIt	configuration	to	subscribe	to	that	sensor	stream	and	use	the	resulting	data	to	create
an	environment	model	in	which	to	do	path	planning.	Check	the	MoveIt	documentation	for
tips	on	doing	just	that.

At	this	point,	we	have	learned	how	to	model	and	control	new	robots	with	ROS.	In	the	next
chapter,	we’ll	cover	a	different,	but	equally	important,	kind	of	integration,	which	is	adding
a	new	software	library	to	ROS.

http://moveit.ros.org/




Chapter	19.	Adding	a	Software	Library

A	common	step	in	building	a	robotics	application	is	adding	an	existing	software	library
that	provides	an	important	capability.	Depending	on	your	application,	you	might	want	to
give	your	robot	the	ability	to	recognize	certain	objects,	or	detect	people,	or	(as	we’ll	do	in
this	chapter)	speak.	There	are	many	good	libraries	(many	of	them	open	source!)	out	in	the
world	implementing	such	algorithms	that	you	could	use	on	your	robot.	Whenever
possible,	we	recommend	that	you	try	the	existing	libraries,	especially	the	ones	with	strong
reputations	for	reliability	and	support.	While	it’s	always	tempting	to	build	your	own,	and
while	in	some	cases	you	may	eventually	end	up	doing	so,	you’ll	get	going	more	quickly
—	and	learn	more	about	what	exactly	you	need	—	by	starting	with	an	existing	system	that
does	most	of	what	you	want.

Many	libraries	that	are	relevant	to	robotics	have	already	been	integrated	with	ROS,	such
as	OpenCV,	PCL,	and	MoveIt.	These	libraries,	and	the	code	that	makes	them	easy	to	use
in	a	ROS-based	robot,	form	a	vital	part	of	the	overall	ROS	ecosystem.	Much	of	the	value
in	using	ROS	is	having	ready	access	to	the	right	tools	for	the	job,	especially	libraries	of
useful	algorithms.	Still,	you’ll	probably	find	some	library	that	you	need	but	that	hasn’t	yet
been	integrated.

In	this	chapter,	we’ll	discuss	how	to	integrate	an	existing	software	library	(whether	it’s	one
that	you	wrote	or	a	third-party	package)	with	ROS.	Between	the	content	of	this	chapter
and	the	examples	provided	by	the	many	ROS-connected	libraries	already	available,	you’ll
be	ready	to	tackle	the	next	integration	project	on	your	own.

http://wiki.ros.org/vision_opencv?distro=indigo
http://wiki.ros.org/pcl?distro=indigo
http://wiki.ros.org/moveit?distro=indigo


Make	Your	Robot	Talk:	pyttsx
From	Robbie	the	Robot	to	C3PO,	we	have	come	to	expect	our	robots	to	talk	with	us.
While	(at	the	time	of	writing)	there	are	still	some	fundamental	challenges	to	overcome	on
the	path	to	creating	truly	conversational	machines,	giving	your	robot	the	ability	to	speak	is
easy,	fun,	and	can	even	be	a	handy	debugging	tool.	Consider	all	those	times	when	the
robot	is	just	sitting	there,	refusing	to	move,	and	you’re	wondering	why.	While	ROS	offers
great	software	tools	for	helping	you	to	understand	what’s	going	on	(Chapter	21),	to	use
those	tools	you	need	to	be	looking	a	screen,	not	the	robot.	What	if	the	robot	could	talk	to
you,	telling	you	what	state	it’s	in,	what	it’s	waiting	for,	or	something	else?

Fortunately,	following	decades	of	research	in	speech	synthesis,	there	are	now	multiple
text-to-speech	(TTS)	software	packages	that	you	can	use	off	the	shelf,	as	black	boxes.	In
this	section,	we’ll	work	with	the	Python	pyttsx	module,	which	provides	a	unified	way	to
interact	with	TTS	systems	that	are	commonly	available	on	various	operating	systems.

NOTE
Our	goal	in	this	section	is	to	explain	the	process	of	integrating	with	a	library	like	pyttsx.	If	you	want	a
ready-to-use	ROS	node	with	speech	synthesis	capabilities,	try	the	sound_play	package.

First,	let’s	make	sure	that	we	have	pyttsx	installed.	On	most	systems,	sudo	pip	install
pyttsx	will	do	the	job;	for	special	cases,	consult	the	pyttsx	documentation.	To	make	sure
that	it’s	working	properly,	let’s	try	one	of	their	example	programs:

#!/usr/bin/env	python

import	pyttsx

engine	=	pyttsx.init()

engine.say('Sally	sells	seashells	by	the	seashore.')

engine.say('The	quick	brown	fox	jumped	over	the	lazy	dog.')

engine.runAndWait()

Save	that	code	to	a	file	and	run	it:

user@hostname$	python	pyttsx_example.py

You	should	hear	the	two	sentences	spoken	through	your	computer’s	audio	system.	If	you
have	trouble	at	this	step,	check	your	speaker/headphone	connections	and	volume	settings;
after	that,	consult	the	pyttsx	documentation.

Now	we	have	a	working	executable	program	that	will	speak	a	couple	of	sentences;	how
should	we	wrap	it	up	into	a	general-purpose	ROS	node?	We	need	to	decide	a	few	things:

What	type	of	topic/service/action	interface	will	the	node	provide?

What	parameters	should	be	exposed?

How	will	we	integrate	the	ROS	event	loop	with	the	pyttsx	event	loop?

http://wiki.ros.org/sound_play?distro=indigo
http://pyttsx.readthedocs.org


We	start	by	defining	the	action	interface	that	we’ll	use	to	interact	with	our	node.



Action	Interface
Because	the	act	of	converting	text	to	speech	takes	time	—	possibly	many	seconds	for	long
sentences	—	it’s	a	good	candidate	for	an	action	server	(see	Chapter	5).	That	way,	we	can
send	goals	(what	we	want	to	say),	get	notification	when	they’ve	been	said,	and	even
cancel	a	sentence	that	is	in	progress.

Let’s	decide	on	the	message	type	that	will	be	received	as	a	goal	by	our	pyttsx	node.	As
always,	we	should	first	consider	using	an	existing	message,	especially	if	it’s	already	being
used	by	a	similar	node.	In	this	case,	the	most	similar	example	is	the
sound_play/soundplay_node.py	node,	which	subscribes	to	messages	of	type
sound_play/SoundRequest.	But	that	message	has	a	surprisingly	large	number	of	fields
and	flags.	The	complexity	of	the	message	comes	from	the	fact	that	the
sound_play/soundplay_node.py	node	does	more	than	just	text-to-speech	(and	that	it’s
somewhat	specific	to	the	PR2	robot).	We	could	use	that	message	type,	but	it’s	overkill	for
our	application.

So,	we’ll	design	our	own	goal	message	type.	We	know	that	we	need	it	to	contain	a	string
field	that	will	be	the	sentence	to	be	spoken.	Let’s	start	with	that,	then	add	more	fields	later
as	needed.	Similarly,	we	can	leave	the	feedback	and	result	empty,	because	this	node	won’t
have	that	much	status	to	report.	Example	19-1	shows	the	action	definition,	also	available
in	the	action	directory	of	the	basics	package	(refer	back	to	Chapter	5	for	help	with	.action
file	syntax).

Example	19-1.	Talk.action
#	The	sentence	to	be	spoken

string	sentence

---

#	No	result	content	needed

---

#	No	feedback	content	needed

With	the	action	interface	settled,	we	need	to	decide	what	kinds	of	configuration	we	should
offer.

http://docs.ros.org/api/sound_play/html/msg/SoundRequest.html


Parameters
Consulting	the	pyttsx	documentation,	we	see	that	we	can	change	various	settings,	such	as
the	volume	and	rate	of	speech,	and	the	voice	that	is	used.	Those	settings	are	all	good
candidates	for	parameters,	which	the	user	can	set	when	launching	the	node	(see
“Parameter	Server”).

Let’s	start	by	exposing	the	volume	and	rate	of	speech,	because	we	can	reasonably	expect
that	a	user	might	want	to	modify	them.	That’s	what	parameters	are	for:	the	knobs	that	you
expect	users	will	want	to	be	able	to	adjust	easily	and/or	frequently,	without	modifying	any
code.	For	each	parameter,	we	need	to	decide	its	data	type	and	its	default	value	(i.e.,	what
we	will	do	if	the	user	doesn’t	set	a	value).	In	our	case,	the	easiest	thing	is	to	just	mirror
how	the	volume	and	rate	parameters	are	used	in	the	underlying	pyttsx	library:

volume	(float32)

Floating	point	volume	in	the	range	of	0.0	to	1.0	inclusive.	Defaults	to	1.0.

rate	(int32)

Integer	speech	rate	in	words	per	minute.	Defaults	to	200	words	per	minute.

We	should	also	add	a	parameter	to	control	whether	the	node	will	preempt	a	sentence	that	is
currently	being	spoken	when	a	new	sentence	is	received.	Interrupting	the	speaker	might
not	be	the	nicest	thing	from	a	user	interaction	point	of	view,	but	it’s	a	good	capability	to
have,	and	we	want	the	developer	to	have	control	over	that	behavior.	Our	new	parameter	is:

preempt	(bool)

Whether	to	preempt	in-progress	speech	in	response	to	a	new	goal.	Defaults	to	false.

Now	we	know	what	the	external	interface	to	our	node	will	look	like,	both	for	control
(action	server)	and	configuration	(parameters).	Next	we	will	determine	how	to	design	the
internal	structure	of	the	node	to	bridge	between	the	pyttsx	library	and	the	rospy	library.

http://pyttsx.readthedocs.org


Event	Loops
A	common	issue	when	integrating	an	existing	software	library	into	a	ROS	node	is	how	to
manage	event	loops.	Often,	the	library	will	have	its	own	way	to	manage	execution	and
may	even	want	you	to	give	up	control	of	your	main()	function.	Every	situation	will	be	a
little	different,	but	it’s	often	the	case	that	you’ll	need	to	separate	the	library’s	event	loop
into	its	own	thread.	That’s	usually	easy	enough,	but	it’s	also	important	to	ensure	that	the
event	loop	can	be	properly	and	safely	stopped	at	the	right	time.

For	the	pyttsx	node,	we’ll	create	a	separate	thread	for	its	event	loop,	and	we’ll	structure
that	thread	in	such	a	way	that	we	can	reliably	shut	it	down.	Here’s	the	code	for	that	thread:

				def	loop(self):

								self.engine.startLoop(False)

								while	not	rospy.is_shutdown():

												self.engine.iterate()

												time.sleep(0.1)

								self.engine.endLoop()

In	this	thread,	we	check	whether	it’s	time	to	shut	down	in	between	repeated	calls	to	the
library’s	iterate()	function,	which	causes	the	event	loop	to	turn	over	once,	processing
the	next	event.	We	could	instead	call	the	library’s	startLoop()	function	with	the	argument
True,	which	enters	an	internal	processing	loop,	but	then	we	would	need	to	have	the	right
machinery	in	another	thread	to	call	endLoop()	at	the	right	time.

While	the	details	of	this	interaction	are	specific	to	the	pyttsx	library,	the	underlying
characteristics	are	shared	by	many	libraries.	For	example,	it’s	common	to	see	both	the
“endless	loop”	call	(startLoop(True)	in	the	case	of	pyttsx,	or	ros::spin()	in	the	case
of	roscpp)	and	the	“do	one	loop”	call	(iterate()	in	the	case	of	pyttsx,	or
ros::spinOnce()	in	the	case	of	roscpp).	The	right	way	to	use	the	library’s	event
mechanisms	will	depend	on	how	they	work	and	your	requirements.

Having	decided	on	the	action	interface,	parameters,	and	event	loop	structure,	we’re	ready
to	write	our	pyttsx	action	server	node.



The	Speech	Server
Example	19-2	shows	the	code	for	a	full	speech	synthesis	node.	Don’t	worry	if	it	looks
intimidating;	we’re	going	to	step	through	each	part	of	the	program.

Example	19-2.	pyttsx_server.py
#!	/usr/bin/env	python

import	rospy

import	threading,	time,	pyttsx

import	actionlib

from	basics.msg	import	TalkAction,	TalkGoal,	TalkResult

class	TalkNode():

				def	__init__(self,	node_name,	action_name):

								rospy.init_node(node_name)

								self.server	=	actionlib.SimpleActionServer(action_name,	TalkAction,

										self.do_talk,	False)

								self.engine	=	pyttsx.init()

								self.engine_thread	=	threading.Thread(target=self.loop)

								self.engine_thread.start()

								self.engine.setProperty('volume',	rospy.get_param('~volume',	1.0))

								self.engine.setProperty('rate',	rospy.get_param('~rate',	200.0))

								self.preempt	=	rospy.get_param('~preempt',	False)

								self.server.start()

				def	loop(self):

								self.engine.startLoop(False)

								while	not	rospy.is_shutdown():

												self.engine.iterate()

												time.sleep(0.1)

								self.engine.endLoop()

				def	do_talk(self,	goal):

								self.engine.say(goal.sentence)

								while	self.engine.isBusy():

												if	self.preempt	and	self.server.is_preempt_requested():

																self.engine.stop()

																while	self.engine.isBusy():

																				time.sleep(0.1)

																self.server.set_preempted(TalkResult(),	"Talk	preempted")

																return

												time.sleep(0.1)

								self.server.set_succeeded(TalkResult(),	"Talk	completed	successfully")

talker	=	TalkNode('speaker',	'speak')

rospy.spin()

Let’s	look	at	the	code	piece	by	piece.	First	we	do	some	standard	imports,	including	the
Talk	action	message	types	that	we’ll	need	and	the	pyttsx	module.	We	also	import	the
standard	threading	module,	which	we’ll	need	to	manage	the	event	loop	thread:

import	rospy

import	threading,	time,	pyttsx

import	actionlib

from	basics.msg	import	TalkAction,	TalkGoal,	TalkResult

Next	we	create	a	class,	TalkNode,	which	will	make	it	easier	(or	at	least	cleaner)	to	store
some	state	about	the	node,	including	the	speech	engine.	In	the	constructor,	we	initialize
the	node,	create	the	action	server,	initialize	the	speech	engine,	then	create	and	start	the
thread	that	will	run	the	event	loop:

class	TalkNode():

				def	__init__(self,	node_name,	action_name):



								rospy.init_node(node_name)

								self.server	=	actionlib.SimpleActionServer(action_name,	TalkAction,

										self.do_talk,	False)

								self.engine	=	pyttsx.init()

								self.engine_thread	=	threading.Thread(target=self.loop)

								self.engine_thread.start()

Now	it’s	time	to	handle	parameters,	then	start	the	action	server.	The	volume	and	rate
parameters	get	passed	directly	to	the	library;	we’ll	keep	the	preempt	parameter	for
ourselves:

								self.engine.setProperty('volume',	rospy.get_param('~volume',	1.0))

								self.engine.setProperty('rate',	rospy.get_param('~rate',	200.0))

								self.preempt	=	rospy.get_param('~preempt',	False)

								self.server.start()

TIP
A	leading	tilde	character	in	a	parameter	name,	such	as	~volume,	indicates	that	the	parameter	is	private	to	the
node,	which	means	that	it	will	be	stored	in	and	retrieved	from	the	node’s	namespace,	as	opposed	to	its
parent	namespace	(which	is	the	default).	It	is	good	practice	to	keep	parameters	local	to	the	node	using	them
whenever	possible.	If	our	node	is	named	speaker,	then	the	volume	parameter	will	be	stored	in	the
parameter	server	as	/speaker/volume	(unless	the	node	is	itself	pushed	down	into	a	namespace,	in	which
case	the	parameter	name	would	be	further	qualified).

We	already	went	over	the	code	for	the	loop()	function	that	runs	in	a	separate	thread.	Let’s
look	at	the	code	for	the	goal	callback,	do_talk().	On	receipt	of	a	new	goal,	which	is	a
sentence,	we	pass	the	sentence	to	the	speech	engine:

				def	do_talk(self,	goal):

								self.engine.say(goal.sentence)

Having	asked	the	speech	engine	to	say	the	sentence,	we	need	to	monitor	it	for	completion.
Also,	if	preempt	was	set,	we	need	to	check	for	a	preemption	request.	If	the	current	goal	is
to	be	preempted,	then	we	call	stop()	on	the	engine,	followed	by	a	second	loop	to	wait	for
confirmation	that	it’s	stopped,	and	finally	a	report	back	to	clients	that	the	preemption	was
accomplished.	Otherwise,	when	the	speech	engine	has	finished	saying	the	sentence,	we
report	that	success:

								while	self.engine.isBusy():

												if	self.preempt	and	self.server.is_preempt_requested():

																self.engine.stop()

																while	self.engine.isBusy():

																				time.sleep(0.1)

																self.server.set_preempted(TalkResult(),	"Talk	preempted")

																return

												time.sleep(0.1)

								self.server.set_succeeded(TalkResult(),	"Talk	completed	successfully")

Now	that	we	have	an	action	server	that	will	accept	commands	to	make	the	robot	talk,	we
need	to	write	an	action	client	that	will	exercise	it.



The	Speech	Client
A	ROS	node	that	activates	the	speech	server	is	straightforward	to	write.	Example	19-3
shows	the	code	for	a	simple	client	program	that	tells	the	server	to	say	“hello	world”	a	few
times.

Example	19-3.	pyttsx_client.py
#!	/usr/bin/env	python

import	rospy

import	actionlib

from	basics.msg	import	TalkAction,	TalkGoal,	TalkResult

rospy.init_node('speaker_client')

client	=	actionlib.SimpleActionClient('speak',	TalkAction)

client.wait_for_server()

goal	=	TalkGoal()

goal.sentence	=	"hello	world,	hello	world,	hello	world,	hello	world"

client.send_goal(goal)

client.wait_for_result()

print('[Result]	State:	%d'%(client.get_state()))

print('[Result]	Status:	%s'%(client.get_goal_status_text()))

In	this	program,	following	the	usual	initialization,	we	create	an	action	client	of	the
appropriate	type,	send	a	sentence	as	a	goal,	then	wait	for	completion.	That’s	the	beauty	of
using	an	action	server:	we’ve	wrapped	up	the	non	trivial	behavior	of	synthesizing	speech
in	an	interface	where	we	can	just	send	it	a	string	of	words,	then	wait	to	be	told	that	it’s
done	executing.	We’ve	written	the	code;	now	it’s	time	to	test	it.



Checking	That	Everything	Works	as	Expected
Let’s	verify	that	our	speech	server	and	client	work	as	intended.	Open	a	new	terminal,	and
start	up	roscore.	In	another	terminal,	start	the	server:

user@hostname$	rosrun	basics	pyttsx_server.py

In	a	third	terminal,	start	the	client:

user@hostname$	rosrun	basics	pyttsx_client.py

You	should	hear	the	words	“hello	world”	repeated	a	few	times.	Let’s	try	out	those
parameters.	Stop	the	server,	then	run	it	again	with	a	lower	volume	setting:

user@hostname$	rosrun	basics	pyttsx_server.py	_volume:=0.5

Now	run	the	client	again,	and	you	should	hear	the	same	words,	but	quieter.	You	can	adjust
the	rate	of	speech	in	the	same	way.	You	can	also	experiment	with	the	effect	of	the
preempt	parameter:	try	running	the	server	with	_preempt:=true,	then	run	two	instances	of
the	client,	each	in	a	separate	terminal.	You	should	hear	the	speech	begin	on	behalf	of	the
first	client,	then	be	interrupted	and	start	again	on	behalf	of	the	second	client	(the	effect
will	be	more	noticeable	if	you	modify	the	second	client	to	send	a	different	string).



Summary
In	this	chapter,	we	discussed	how	to	integrate	an	existing	software	library	into	a	ROS
system,	which	is	often	called	for	when	building	a	robotics	application.	We	worked	with
the	relatively	simple	example	of	a	text-to-speech	system	that	has	just	one	kind	of	input
(the	text	to	be	spoken),	but	the	basic	elements	apply	equally	well	to	other	libraries:	decide
on	the	appropriate	data	types,	and	develop	an	interface	(in	this	case	an	action	interface);
decide	on	the	parameters	that	will	be	accepted;	and	decide	how	to	integrate	the	library’s
event	loop	with	your	own.

Even	this	relatively	simple	example	resulted	in	a	useful	node	that	could	be	deployed
straight	away	on	a	robot	(as	long	as	the	robot	has	speakers).	The	node	could,	of	course,	be
improved	and	extended	in	a	number	of	ways,	from	exposing	more	configuration	of	the
speech	engine	(e.g.,	which	voice	is	being	used),	to	delivering	detailed	feedback	to	clients
(e.g.,	notification	of	each	word	having	been	said).	There’s	almost	always	more	that	could
be	exposed,	and	the	art	is	in	deciding	what	to	leave	out.

In	the	past	few	chapters,	we’ve	presented	examples	and	discussed	patterns	for	adding
devices,	robots,	and	capabilities	to	ROS.	The	ease	with	which	the	platform	can	be
stretched	and	extended	to	cover	new	use	cases	is	a	key	feature	of	ROS	—	but	each	new
feature	brings	complexity,	and	writing	good	robot	software	is	a	challenging	task	to	begin
with.	With	that	challenge	in	mind,	the	next	few	chapters	will	introduce	some	important
tools	and	techniques	that	will	help	you	to	become	an	efficient	and	effective	ROS
developer.



Part	V.	Tips	and	Tricks





Chapter	20.	Tools

Efficient	software	development	requires	good	developer	tools.	Where	would	you	be
without	your	favorite	editor,	version	control	system,	or	testing	framework?	When
developing	robotics	software,	we	of	course	rely	on	those	tools,	but	we	also	add	some	new
ones.	These	ROS-specific	developer	tools	are	designed	to	help	you	work	with	your
robotics	applications,	including	starting	and	stopping,	introspection,	and	testing.

In	this	chapter,	we’ll	cover	commonly	used	ROS	tools,	explaining	when	and	how	to	use
each	one.	We	will	leave	out	the	following	tools,	which	are	covered	in	the	context	of
debugging	in	Chapter	21:	rosbag,	rqt_bag,	rqt_graph,	and	rqt_plot.



The	Master	and	Friends:	roscore
We	first	encountered	roscore	much	earlier	in	this	book	(see	“roscore”),	and	have	used	it
extensively	since	then.	But	it	will	be	helpful	to	understand	what	exactly	it	does.	When	you
run	roscore,	which	is	your	first	step	in	bringing	up	a	ROS	system,	you’re	really	starting
three	different	tools:

The	master,	which	handles	the	name	service.

The	parameter	server,	which	holds	key/value	parameter	data	(see	“Parameters:
rosparam”).

The	rosout	node,	which	aggregates	debug	messages	from	all	other	nodes	(see	“/rosout
Versus	/rosout_agg”).

The	first	thing	that	a	ROS	node	does	on	startup	is	contact	the	master	to	register	itself.
That’s	why,	if	you	try	to	start	a	node	without	a	master,	you’ll	get	a	warning,	like	this:

user@hostname$	python	-c	"import	rospy;	rospy.init_node('my_node')"

Unable	to	register	with	master	node	[http://localhost:11311]:	master	may

not	be	running	yet.	Will	keep	trying.

When	registering	with	the	master,	each	node	supplies	its	own	network	address,	which	is
where	it	can	be	contacted	later	by	other	nodes.	The	master	maintains	a	table	of	these
registrations,	each	one	mapping	the	node	name	to	its	network	address.	For	example,	the
node	my_node	might	be	listening	for	new	connections	at	the	address
http://localhost:61515.	The	port	on	which	a	node	listens	(61515	in	this	example)	is
randomly	assigned	by	the	operating	system	when	the	node	starts,	which	is	why	we	need
the	master	to	keep	track	of	where	each	node	can	be	found.	This	mapping	of	node	name	to
address	is	used	constantly	behind	the	scenes	when	nodes	connect	with	each	other.

In	addition	to	registering	itself	with	the	master,	a	node	registers	each	of	its	topic
subscriptions	and	advertisements,	and	its	services.	When	you	advertise	a	topic	by	creating
a	rospy.Publisher,	the	rospy	library	registers	with	the	master	that	your	node	is	a
publisher	of	that	topic.	That	information	is	subsequently	provided	to	each	node	that
registers	as	a	subscriber	for	the	topic	(by	creating	a	rospy.Subscriber).	Given	the
publisher	list	for	a	topic,	each	subscribing	node	will	contact	each	publishing	node	to
negotiate	a	connection	over	which	to	receive	messages	for	that	topic.	Thereafter,	the
message	data	is	sent	directly	from	publishers	to	subscribers,	without	involving	the	master.
For	services,	a	similar	mechanism	is	used	to	keep	track	of	names	and	addresses	of	servers,
allowing	clients	to	find	them	by	name.

With	its	critical	role	in	name	lookup,	the	master	is	the	one	centralized	aspect	of	an
otherwise	distributed	ROS	system.	As	such,	it	is	also	a	potential	point	of	failure.	If	you	kill
the	master,	the	situation	is	usually	unrecoverable.	Already	running	nodes	and	existing
topic	connections	will	persist,	but	new	nodes	can’t	be	started,	and	new	connections	can’t



be	made.	Because	there	is	no	easy	way	to	reconstruct	the	state	previously	held	by	the
master,	you	will	likely	need	to	restart	your	entire	ROS	system	following	the	death	of	the
master.	If	the	master	is	only	temporarily	unreachable	—	e.g.,	because	a	robot	moves	out	of
wireless	range	—	then	the	system	should	resume	normal	operation	when	the	master
becomes	reachable	again.	Fortunately,	the	master	is	a	robust,	well-tested	tool	that	is	not
prone	to	crashing.

It’s	common	to	keep	a	master	running	over	an	extended	period	of	time,	reusing	it	across
multiple	development	and	debugging	sessions.	This	is	fine	to	do,	with	the	caveat	that	the
master	can	accumulate	stale	state	about	nodes.	When	a	node	crashes,	it	won’t	deregister
itself	with	the	master	and	so	will	still	show	up,	for	example,	when	you	run	rosnode	list
(see	“Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv”).	Such	stale	state	is
usually	not	a	problem,	as	the	ROS	tools	and	client	libraries	are	designed	to	tolerate	it,	but
it	can	be	distracting.	To	purge	the	master	of	entries	for	nodes	that	are	no	longer	reachable,
run	rosnode	cleanup.



Parameters:	rosparam
In	the	same	process	with	the	master	(but	functionally	separate)	is	the	parameter	server.
The	job	of	the	parameter	server	is	to	store	configuration	data	in	a	network-accessible
database.	The	parameter	server	maintains	a	dictionary	of	key/value	pairs,	in	which	the
keys	are	strings	and	the	values	can	be	of	(nearly)	any	type.	Any	node,	including	yours,	can
write	to	or	read	from	the	parameter	server.

TIP
Parameters	are	intended	for	configuration,	not	communication.	If	you	try	to	use	parameters	to	exchange
high-volume	or	high-rate	data	between	nodes,	you	will	be	sorely	disappointed	by	the	resulting	performance.
Instead,	use	topics	for	these	purposes.

While	parameter	access	is	usually	done	from	code	(via	rospy.get_param()	and
rospy.set_param()),	it	can	be	useful	to	operate	on	the	parameter	server	from	the
command	line,	for	which	we	use	the	rosparam	tool.	For	example,	to	list	the	current
parameters:

user@hostname$	rosparam	list

/rosdistro

/roslaunch/uris/host_localhost__50387

/rosversion

/run_id

You	can	also	operate	on	individual	parameters,	setting,	getting,	or	deleting	them:

user@hostname$	rosparam	set	my_param	4.2

user@hostname$	rosparam	get	my_param

4.2

user@hostname$	rosparam	delete	my_param

user@hostname$	rosparam	get	my_param

ERROR:	Parameter	[/my_param]	is	not	set

Parameter	values	can	be	specified	using	any	valid	YAML	string.	You	can	put	parameters
into	a	namespace	by	either	specifying	a	YAML	dictionary	or	using	the	/	separator:

user@hostname$	rosparam	set	my_dict	"{message:	'Hello	world',	x:	4.2,	y:	2.4}"

user@hostname$	rosparam	get	my_dict

{message:	Hello	world,	x:	4.2,	y:	2.4}

user@hostname$	rosparam	set	my_dict/message	'Goodbye	world'

user@hostname$	rosparam	get	my_dict/message

Goodbye	world

You	can	also	dump	parameter	data	to	and	load	it	back	from	a	YAML	file,	optionally	in	a
namespace:

user@hostname$	rosparam	set	my_dict	"{message:	'Hello	world',	x:	4.2,	y:	2.4}"

user@hostname$	rosparam	dump	data.yaml	my_dict

user@hostname$	cat	data.yaml

{message:	Hello	world,	x:	4.2,	y:	2.4}

user@hostname$	rosparam	load	data.yaml	my_dict2

user@hostname$	rosparam	get	my_dict2

{message:	Hello	world,	x:	4.2,	y:	2.4}



In	summary,	rosparam	is	handy	tool	for	inspecting	and	modifying	the	parameters	that
configure	your	ROS	system.



Navigating	the	Filesystem:	roscd
As	we’ve	seen	throughout	this	book,	ROS	code	is	organized	into	packages,	with	each
package	in	its	own	directory.	It	can	sometimes	be	hard	to	remember	where	exactly	in	the
filesystem	a	given	package	lives.	To	speed	up	moving	around	among	packages,	we	use
roscd,	which	changes	to	the	directory	containing	a	given	package:

user@hostname$	roscd	my_package

The	roscd	tool	is	part	of	the	rosbash	suite,	where	it	is	implemented	as	a	bash	shell
function,	rather	than	an	executable	program.	To	use	roscd	or	other	rosbash	functions,	you
must	be	sure	to	source	the	bash-specific	ROS	setup	file,	for	example:

user@hostname$	source	/opt/ros/indigo/setup.bash

Another	handy	rosbash	shortcut	is	rosed,	with	which	you	can	edit	a	file	in	a	ROS
package	without	having	to	first	change	to	the	package’s	directory.	The	file	will	be	opened
in	your	favorite	editor	(as	determined	by	the	value	of	the	environment	variable	EDITOR):

user@hostname$	rosed	my_package	my_file.cpp

The	rosed	tool	will	look	for	a	file	by	the	given	name	anywhere	within	the	given	package’s
directory.



Starting	a	Node:	rosrun
Just	like	other	resources,	ROS	nodes	are	stored	in	packages,	where	they	are	not	in	the
default	search	path	for	executables	(the	environment	variable	PATH).	As	a	result,
depending	on	where	a	package	sits	in	the	filesystem,	running	a	node	might	require	you	to
use	a	long	and	difficult-to-remember	directory	prefix	to	specify	where	that	node	is	on	disk.
Instead,	you	can	use	rosrun	and	just	give	the	package	name	and	node	name:

user@hostname$	rosrun	my_package	my_node

Similar	to	rosed,	rosrun	will	look	for	an	executable	file	by	the	given	name	anywhere
within	the	given	package’s	directory.	You	can	kill	a	node	started	via	rosrun	just	as	you
would	if	you	had	run	it	directly,	with	Ctrl-C.	The	rosrun	tool	is	part	of	the	rosbash	suite.



Starting	Many	Nodes:	roslaunch
Starting	nodes	one	by	one	with	rosrun	is	good	for	testing	and	debugging,	but	most	ROS
systems	comprise	many	nodes,	and	you	don’t	want	to	have	to	start	and	stop	them
individually.	You	also	don’t	want	to	have	to	remember	which	command-line	arguments,
name	remappings,	and	parameters	to	provide	to	each	node.	Ideally,	especially	for	complex
systems,	you	would	describe	the	desired	set	of	nodes	and	their	configuration	in	a	file.

For	this	purpose,	we	use	roslaunch,	a	tool	that	reads	an	XML	description	of	a	set	of
nodes,	then	launches	and	monitors	those	nodes.	By	convention,	roslaunch	XML	files
have	the	extension	.launch	and	are	called	“launch	files.”	For	example,	to	launch	both	the
talker	and	listener	examples	from	the	rospy_tutorials	package,	we	would	write	the
XML	code	shown	in	example	Example	20-1:

Example	20-1.	talker_listener.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker"	/>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener"	/>

</launch>

TIP
While	roslaunch	guarantees	that	all	parameters	are	set	prior	to	executing	any	nodes,	there	is	no	ordering
when	it	comes	to	executing	the	nodes.	Conceptually,	all	nodes	start	executing	at	around,	but	not	exactly,	the
same	time.	If	you	need	to	sequence	the	execution	of	two	nodes,	use	ROS	communication	between	them.

We’re	asking	roslaunch	to	start	two	nodes	for	us.	In	each	<node>	tag,	we	specify	the
containing	package	(pkg),	the	name	of	the	executable	file	within	that	package	(type),	and
the	name	that	we	want	to	assign	to	the	node	once	it’s	running	(name).	Save	that	code	to	a
launch	file	called	talker_listener.launch,	then	pass	it	to	roslaunch:

user@hostname$	roslaunch	talker_listener.launch

roslaunch	talker_listener.launch…	logging	to

/home/user/.ros/log/99e865f8-314c-11e4-bf3a-705681aea243/

		roslaunch-localhost-36423.log

Checking	log	directory	for	disk	usage.	This	may	take	awhile.

Press	Ctrl-C	to	interrupt

started	roslaunch	server	http://localhost:52380/

SUMMARY

========

PARAMETERS

	*	/rosdistro

	*	/rosversion

NODES

		/

				listener	(rospy_tutorials/listener)

				talker	(rospy_tutorials/talker)

ROS_MASTER_URI=http://localhost:11311

core	service	[/rosout]	found

process[talker-1]:	started	with	pid	[36428]

process[listener-2]:	started	with	pid	[36429]



Now	both	the	talker	and	listener	nodes	are	running.	To	stop	them,	give	a	Ctrl-C	to
roslaunch,	and	it	will	take	care	of	shutting	everything	down.	It	keeps	careful	track	of	all
processes	that	it	has	launched	and	is	thorough	about	stopping	them	before	exiting	itself.	If
a	node	is	not	responding	properly	to	a	shutdown	request,	roslaunch	will	forcibly	kill	it.
This	is	a	key	feature	of	roslaunch	and	a	reason	to	use	it	even	for	small	ROS	systems:	in	a
distributed	computing	environment	comprising	multiple	processes,	it’s	important	to	be
sure	that	after	shutdown,	they	are	all	indeed	stopped.

TIP
If	there	is	already	an	instance	of	roscore	running,	roslaunch	will	use	it.	If	not,	roslaunch	will	start	a
roscore	automatically	and	will	kill	it	on	exit.

You	may	have	noticed	that	in	the	previous	example,	there	were	no	messages	printed	to	the
console,	which	is	surprising	because	both	talker	and	listener	are	usually	very	chatty,
printing	to	the	each	time	a	message	is	sent	or	received.	In	this	case,	there’s	no	output
because	the	default	behavior	of	roslaunch	is	to	direct	nodes’	output	to	log	files	to	avoid
cluttering	the	console.	If	you	want	to	see	the	output	from	a	node,	set	the	attribute
output="screen"	in	the	corresponding	<node>	tag.	For	example,	to	see	the	output	from
the	listener	node,	we	would	modify	the	launch	file	as	shown	in	Example	20-2.

Example	20-2.	talker_listener_screen.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker"	/>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener"	output="screen"	/>

</launch>

Then	we’ll	see	the	usual	console	output	from	listener	even	when	run	by	roslaunch:

user@hostname$	roslaunch	talker_listener_screen.launch

...

process[talker-1]:	started	with	pid	[36626]

process[listener-2]:	started	with	pid	[36627]

[INFO]	[WallTime:	1409517683.732251]	/listener	I	heard	hello	world	1409517683.73

[INFO]	[WallTime:	1409517683.831888]	/listener	I	heard	hello	world	1409517683.83

[INFO]	[WallTime:	1409517683.932052]	/listener	I	heard	hello	world	1409517683.93…

You	can	specify	name	remappings	for	a	node	in	a	launch	file	by	using	the	<remap>	tag
inside	the	corresponding	<node>	tag.	For	example,	we	can	remap	our	talker/listener
pair	to	communicate	over	a	different	topic	than	their	default,	which	is	chatter,	as	seen	in
Example	20-3.

Example	20-3.	talker_listener_remap.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker">

				<remap	from="chatter"	to="my_chatter"/>

		</node>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener">

				<remap	from="chatter"	to="my_chatter"/>

		</node>

</launch>

It’s	also	useful	to	specify	parameters	in	a	launch	file	by	using	the	<param>	tag.	Most	often,
you’ll	be	setting	parameters	for	a	specific	node,	which	you	can	do	by	putting	the	<param>



tag	inside	the	corresponding	<node>	tag.	For	example,	we	could	add	a	parameter	in	the
namespace	of	the	talker	node	as	shown	in	Example	20-4.

Example	20-4.	talker_listener_param.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker">

				<param	name="my_param"	value="4.2"/>

		</node>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener"	/>

</launch>

Pass	that	file	to	roslaunch,	then	check	the	parameter	value	from	another	terminal:

user@hostname$	rosparam	get	talker/my_param

4.2

In	this	case,	we’re	just	setting	a	parameter	in	a	node’s	namespace,	then	reading	it	back.
More	often,	the	node	in	question	would	read	the	parameter	value	and	modify	its	behavior
in	some	way.	Because	parameters	are	usually	read	by	nodes	on	startup,	roslaunch
guarantees	that	all	parameters	specified	in	a	launch	file	are	set	prior	to	launching	any	of
the	nodes.

It	is	common	to	separate	a	complex	roslaunch	configuration	into	multiple	launch	files
that	are	easier	to	test,	document,	and	maintain.	These	files	can	be	composed	through	the
use	of	the	<include>	tag.	For	example,	we	could	separate	the	node	declarations	from
Example	20-4	into	two	files,	as	shown	in	Example	20-5,	which	is	included	by
Example	20-6.	Note	that	the	file	attribute	of	the	<include>	tag	should	be	relative	to	the
location	of	a	ROS	package,	which	in	this	case	is	called	basics.

Example	20-5.	listener.launch
<launch>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener"	/>

</launch>

Example	20-6.	talker_listener_param_include.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker">

				<param	name="my_param"	value="4.2"/>

		</node>

		<include	file="$(find	basics)/launch/listener.launch"/>

</launch>

While	these	examples	cover	the	most	commonly	used	features	of	roslaunch,	there	are
many	more,	such	as	namespace	grouping,	environment	variable	access,	argument
substitution,	conditional	evaluation,	and	launching	on	remote	machines.	For	details	on
advanced	features,	consult	the	roslaunch	documentation.

http://wiki.ros.org/roslaunch?distro=indigo


Testing	a	Many-Node	System:	rostest
Testing	is	a	critical	aspect	of	any	software	system,	and	we	strongly	encourage	the	use	of
standard	testing	frameworks	such	as	unittest	or	nose	(Python)	and	Google	Test	(C++).
These	frameworks	allow	you	to	write	test	programs	that	exercise	your	code	in	various
ways	to	ensure	that	it	behaves	correctly.	But,	while	these	frameworks	are	great	for	testing
libraries	in	isolation,	it	can	be	difficult	to	write	tests	for	an	entire	ROS	system.	For	this
purpose	we	use	rostest.

The	rostest	tool	is	just	an	extension	to	roslaunch,	adding	the	<test>	tag	to	allow
specification	of	a	test	program	to	be	run	alongside	the	other	nodes.	For	example,	if	we
wanted	to	test	that	the	talker	in	our	talker/listener	system	is	working	properly,	we
could	extend	the	launch	file	as	shown	in	Example	20-7.

Example	20-7.	talker_listener_test.launch
<launch>

		<node	name="talker"	pkg="rospy_tutorials"	type="talker"	/>

		<node	name="listener"	pkg="rospy_tutorials"	type="listener"	/>

		<test	test-name="test_talker"	pkg="basics"	type="test_talker.py"	/>

</launch>

This	file	says	to	rostest:	bring	up	the	nodes,	then	run	the	test	program	to	check	that
everything	is	working.	Given	this	file	as	input,	rostest	will	launch	the	nodes	just	like
roslaunch	does.	The	difference	with	rostest	is	that,	after	launching	the	rest	of	the	nodes,
it	will	further	launch	the	test	node,	which	is	expected	to	use	one	of	the	standard	testing
frameworks	to	verify	that	the	rest	of	the	nodes	are	working	properly	and	to	report	its
findings	in	an	xUnit-format	output	file.

TIP
If	you	declare	multiple	<test>	tags	in	a	single	launch	file,	rostest	will	run	them	all,	sequentially.	For	each
test,	rostest	will	ensure	a	clean	environment	by	tearing	down	and	restarting	the	nodes	to	be	tested.

For	example,	the	test_talker.py	node	referenced	in	Example	20-7	might	have	the
contents	shown	in	Example	20-8.

Example	20-8.	test_talker.py
#!/usr/bin/env	python

import	sys,	unittest,	time

import	rospy,	rostest

from	std_msgs.msg	import	String

class	TestTalker(unittest.TestCase):

				def	__init__(self,	*args):

								super(TestTalker,	self).__init__(*args)

								self.success	=	False

				def	callback(self,	data):

								self.success	=	data.data	and	data.data.startswith('hello	world')

				def	test_talker(self):

								rospy.init_node('test_talker')

								rospy.Subscriber("chatter",	String,	self.callback)

								timeout_t	=	time.time()	+	10.0

								while	(not	rospy.is_shutdown()	and



															not	self.success	and	time.time()	<	timeout_t):

												time.sleep(0.1)

								self.assert_(self.success)

if	__name__	==	'__main__':

				rostest.rosrun('basics',	'talker_test',	TestTalker,	sys.argv)

In	this	test,	we	subscribe	to	the	chatter	topic,	then	check	for	receipt	of	a	message	on	that
topic	that	starts	with	a	particular	substring.	If	that	condition	is	satisfied	within	10	seconds,
then	we	report	success;	otherwise,	we	report	failure.	In	other	words,	we’re	verifying	that
the	talker	node	is	functioning	as	expected.

Let’s	look	at	the	fundamental	elements	of	this	test,	starting	with	the	module	imports:

import	sys,	unittest,	time

import	rospy,	rostest

from	std_msgs.msg	import	String

In	addition	to	the	usual	imports	in	a	rospy	node,	we’re	also	pulling	in	the	standard	Python
unittest	module	and	the	ROS-specific	rostest	module.	Taken	together,	these	two
modules	allow	us	to	declare,	run,	and	collect	results	from	our	test.	Next	we	create	the	class
that	will	contain	our	test(s):

class	TestTalker(unittest.TestCase):

				def	__init__(self,	*args):

								super(TestTalker,	self).__init__(*args)

								self.success	=	False

As	usual	when	using	unittest,	we	create	a	class	that	inherits	from	the
unittest.TestCase	class.	Because	we’re	going	to	signal	success	in	this	test
asynchronously,	we	also	declare	a	constructor	that	initializes	a	success	flag	(and	explicitly
invokes	the	unittest.TestCase	constructor;	to	ensure	proper	setup	for	running	tests).
With	the	initial	conditions	in	place,	we	write	the	test	itself:

				def	callback(self,	data):

								self.success	=	data.data	and	data.data.startswith('hello	world')

				def	test_talker(self):

								rospy.init_node('test_talker')

								rospy.Subscriber("chatter",	String,	self.callback)

								timeout_t	=	time.time()	+	10.0

								while	(not	rospy.is_shutdown()	and

															not	self.success	and	time.time()	<	timeout_t):

												time.sleep(0.1)

								self.assert_(self.success)

First,	there’s	a	callback	function	that,	if	provided	a	string	message	with	the	expected
content,	will	signal	that	the	test	has	succeeded.	Next,	we	create	a	function	that	runs	the
test:	create	a	node,	subscribe	to	a	topic	using	the	previously	defined	callback	function,
wait	for	either	success	or	a	timeout,	then	report	the	test	result	via	the
unittest.TestCase.assert_()	function.	The	name	of	our	test	function	is	important	—	in
this	context,	all	functions	with	names	beginning	with	test_	are	assumed	to	be	tests	and
will	be	run	as	a	result	of	running	the	overall	test	suite.



Finally,	in	this	invocation	of	rostest.rosrun(),	we’re	saying	that	this	test	is	part	of	the
basics	ROS	package,	that	the	test	is	named	talker_test	(this	name	will	be	used	to
organize	test	results	and	should	be	unique	within	each	package),	and	that	the	tests	to	be
run	are	defined	in	the	TestTalker	class:

if	__name__	==	'__main__':

				rostest.rosrun('basics',	'talker_test',	TestTalker,	sys.argv)

TIP
The	roslaunch	tool	will	ignore	<test>	tags	in	launch	files,	so	you	can	freely	declare	tests	directly	in	launch
files	that	you	are	actively	using.

While	this	example	test	is	intentionally	simple,	the	same	techniques	can	be	applied	to
build	sophisticated	tests	for	complex	ROS	systems.	The	structure	of	a	good	ROS	test	is
similar	to	that	found	in	other	software	testing:	set	up	the	system	to	be	tested,	optionally
stimulate	it	with	input,	then	verify	some	expected	output.



Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and
rossrv
A	core	design	principle	of	ROS	is	that	it	should	be	possible	from	outside	the	system	to	see
as	much	as	possible	of	what’s	going	on	inside.	This	introspection	capability	is	made
possible	by	the	fact	that	both	the	master	and	the	nodes	can	be	remotely	interrogated	with
regard	to	their	state.	While	you	can	conduct	this	interrogation	directly	in	code,	it’s	usually
more	convenient	to	use	the	command-line	tools	that	we’ll	present	in	this	section.

To	get	started,	let’s	define	a	simple	system,	consisting	of	a	couple	of	nodes	(Example	20-
9).

Example	20-9.	listener_add_two_ints_server.launch
<launch>

		<node	name="listener"	pkg="rospy_tutorials"

								type="listener"	output="screen"	/>

		<node	name="add_two_ints_server"	pkg="rospy_tutorials"

								type="add_two_ints_server"	output="screen"	/>

</launch>

Save	that	code	to	a	file	called	listener_add_two_ints_server.launch	and	launch	it:

user@hostname$	roslaunch	listener_add_two_ints_server.launch

Now,	imagine	that	you’ve	just	encountered	this	ROS	system	and	you’re	trying	to
understand	how	it	works.	First	let’s	see	what	topics	are	available,	using	rostopic	list:

user@hostname$	rostopic	list

/chatter

/rosout

/rosout_agg

So,	there’s	a	chatter	topic	(we’ll	ignore	the	/rosout	and	/rosout_agg	for	now;	see
“/rosout	Versus	/rosout_agg”).	Let’s	see	what	type	of	message	it	carries,	using	rostopic
info:

user@hostname$	rostopic	info	chatter

Type:	std_msgs/String

Publishers:	None

Subscribers:

	*	/listener	(http://hostname:53752/)

There’s	one	subscriber	to	chatter,	and	the	message	type	is	std_msgs/String.	Let’s	see
what	makes	up	that	type,	using	rosmsg	show:

user@hostname$	rosmsg	show	std_msgs/String

string	data

Now	we	know	that	there	is	one	subscriber	to	the	chatter	topic,	named	listener,	and	that
it	is	expecting	to	receive	messages	of	type	std_msgs/String,	each	of	which	contains	a



field	called	data	that	is	of	type	string.	That’s	a	lot	of	information	to	be	able	to	gather	at
runtime,	without	any	knowledge	of	how	the	system	was	configured.	And	it’s	enough
information	to	allow	us	to	publish	a	message	to	listener	on	the	chatter	topic,	using
rostopic	pub:

user@hostname$	rostopic	pub	/chatter	std_msgs/String\

		"{data:	'Hello	world'}"

publishing	and	latching	message.	Press	ctrl-C	to	terminate

In	the	terminal	where	you	ran	roslaunch,	you	should	see	a	message	from	listener
confirming	receipt	of	the	message,	similar	to	this:

[INFO]	[WallTime:	1409524634.817011]	/listener	I	heard	Hello	world

The	default	behavior	of	rostopic	pub	is	to	publish	and	latch	a	single	message.	But	we
can	publish	multiple	messages	by	using	the	-r	option	to	specify	the	publication	rate	in	Hz:

user@hostname$	rostopic	pub	-r	10	/chatter	std_msgs/String	"{data:	'Hello	world'}"

publishing	and	latching	message.	Press	ctrl-C	to	terminate

Back	in	the	roslaunch	terminal,	you	should	see	a	stream	of	console	output	from
listener,	confirming	receipt	of	each	message.

TIP
Like	rosparam	set,	rostopic	pub	accepts	message	data	in	YAML,	which	allows	you	to	publish
complicated	message	structures	directly	from	the	command	line.

So,	we	can	introspect	topics;	now	let’s	do	the	same	for	services.	We	start	by	listing	the
available	services,	using	rosservice	list:

user@hostname$	rosservice	list

/add_two_ints

/add_two_ints_server/get_loggers

/add_two_ints_server/set_logger_level

/listener/get_loggers

/listener/set_logger_level

/rosout/get_loggers

/rosout/set_logger_level

Let’s	learn	more	about	that	add_two_ints	service	(we’ll	ignore	the	\logger	services	for
now;	see	“Logger	Levels”),	using	rosservice	info:

user@hostname$	rosservice	info	/add_two_ints

Node:	/add_two_ints_server

URI:	rosrpc://localhost:53877

Type:	rospy_tutorials/AddTwoInts

Args:	a	b

This	service	is	being	offered	by	the	add_two_ints_server	node	and	is	of	type
rospy_tutorials/AddTwoInts.	Let’s	see	the	request	and	response	type	definitions,	using
rossrv	show:



user@hostname$	rossrv	show	rospy_tutorials/AddTwoInts

int64	a

int64	b

---

int64	sum

Now	we	know	that	the	add_two_ints_server	node	is	offering	the	add_two_ints	service,
which	is	of	type	rospy_tutorials/AddTwoInts,	which	accepts	a	request	containing	two
integers	and	returns	a	response	containing	one	integer.	That’s	enough	information	to	allow
us	to	call	the	service	directly,	using	rosservice	call:

user@hostname$	rosservice	call	/add_two_ints	"{a:	40,	b:	2}"

sum:	42

Back	in	the	roslaunch	terminal,	you	should	see	some	output	from	the
add_two_ints_server	node	as	it	processes	the	request:

Returning	[40	+	2	=	42]

In	addition	to	topics	and	services,	we	can	introspect	nodes	directly,	starting	with	rosnode
list:

user@hostname$	rosnode	list

/add_two_ints_server

/listener

/rosout

We	can	see	our	two	nodes,	add_two_ints_server	and	listener	(we’ll	ignore	the	rosout
node	for	now;	see	“/rosout	Versus	/rosout_agg”).	Let’s	get	more	details	on	the	listener
node:

user@hostname$	rosnode	info	listener

Node	[/listener]

Publications:

	*	/rosout	[rosgraph_msgs/Log]

Subscriptions:

	*	/chatter	[unknown	type]

Services:

	*	/listener/set_logger_level

	*	/listener/get_loggers

contacting	node	http://localhost:53866/	...

Pid:	38875

Connections:

	*	topic:	/rosout

				*	to:	/rosout

				*	direction:	outbound

				*	transport:	TCPROS

From	this	output,	we	can	see	the	topics	and	services	that	are	used	by	the	node,	as	well	as
the	active	connections	that	exist	between	that	node	and	others.	We	can	check	whether	the
node	is	responsive	with	rosnode	ping,	similar	to	how	we	use	ping	to	check	for	a	machine



on	the	network:

user@hostname$	rosnode	ping	listener

rosnode:	node	is	[/listener]

pinging	/listener	with	a	timeout	of	3.0s

xmlrpc	reply	from	http://localhost:54055/	time=1.947880ms

xmlrpc	reply	from	http://localhost:54055/	time=3.143072ms

xmlrpc	reply	from	http://localhost:54055/	time=3.656149ms

We	can	also	remotely	kill	a	node	via	rosnode	kill:

user@hostname$	rosnode	kill	listener

killing	/listener

killed

Back	in	the	roslaunch	console,	you	can	see	evidence	of	the	node	shutting	down:

shutdown	request:	user	request

[listener]	process	has	finished	cleanly

log	file:	/home/user/.ros/log/99e865f8-314c-11e4-bf3a-705681aea243/listener*.log



Summary
In	this	chapter,	we	covered	the	most	commonly	used	ROS	tools,	learning	along	the	way
how	to	start,	stop,	configure,	test,	and	introspect	a	ROS	system.	You	now	know	what’s
happening	under	the	hood	when	you	run	roscore,	how	to	view	and	modify	parameters
with	rosparam,	how	to	get	around	your	package	directories	with	roscd	and	rosed,	how	to
run	a	single	node	with	rosrun	and	multiple	nodes	with	roslaunch,	and	how	to	test	a
many-node	system	with	rostest.	You	also	know	how	to	combine	rosnode,	rostopic,
rosmsg,	rosservice,	and	rossrv	to	gain	an	understanding	of	what’s	going	on	in	a	running
ROS	system,	even	when	you	don’t	have	any	a	priori	knowledge	of	how	it’s	structured.

These	tools	are	a	key	part	of	the	value	of	ROS	and	will	contribute	significantly	to	your
efficiency	as	a	developer	of	ROS	software.	In	the	next	chapter,	we’ll	focus	on	debugging
techniques,	revisiting	some	of	the	tools	covered	here	and	introducing	some	new	ones.





Chapter	21.	Debugging	Robot	Behavior

As	you’ve	no	doubt	noticed	by	now,	robotics	applications	can	be	complex.	In	addition	to
the	usual	complexity	present	in	any	software	system,	you	have	sensors	and	actuators	that
are	interacting	in	uncertain	ways	with	the	physical	(or	simulated)	world.	And,	at	least	in	a
ROS	system,	you	have	a	distributed	processing	graph	with	many	independent	processes
that	are	interacting	asynchronously	through	message	passing.	In	short,	there	are	many
ways	for	things	to	go	wrong,	and	it	can	sometimes	be	tricky	to	figure	out	what	the
problem	is.

When	you	have	everything	ready,	and	you	hit	the	“Go”	button,	and…	nothing	happens,
what	do	you	do?

Fortunately,	ROS	provides	some	powerful	tools	to	assist	you	in	debugging	your
applications.	In	this	chapter,	we’ll	go	over	the	most	commonly	used	tools,	providing	some
debugging	technique	suggestions	along	the	way.



Log	Messages:	/rosout	and	rqt_console
Just	as	you	would	with	any	other	software,	when	a	ROS	system	isn’t	behaving	properly,
you	should	first	check	for	error	messages.	If	you’re	in	luck,	then	some	part	of	the	system
will	be	telling	you	exactly	what’s	wrong.	Of	course,	the	distributed	nature	of	a	ROS
system	makes	error	message	handling	a	little	more	complex	than	with	a	single	program.

If	you’re	running	a	single	program,	you	would	reasonably	expect	to	see	error	messages
from	that	program	pop	up	in	a	dialog	window	(if	it’s	a	graphical	application,	like	a	web
browser)	or	be	printed	to	the	terminal	where	you	ran	the	program	(if	it’s	a	console
application,	like	a	compiler).	But	ROS	is	a	distributed	computing	environment,	with
applications	commonly	comprising	dozens	of	separate	processes,	the	great	majority	of
them	lacking	a	graphical	interface.	How	can	you	get	error	messages	from	all	those
processes?

You	could	go	check	each	terminal	from	which	you	started	a	node,	but	what	if	you	started	a
whole	bunch	of	nodes	in	one	terminal	with	roslaunch?	Or	what	if	you	don’t	have	access
to	the	terminal	where	the	nodes	were	started	(e.g.,	if	they	were	started	on	the	robot	as	part
of	the	boot	sequence)?	This	situation	is	similar	to	that	encountered	by	operating	system
services:	they	are	started	automatically,	no	one	watches	them,	and	yet	they	need	a	way	to
report	errors.	Operating	systems	solve	this	problem	with	a	central	message	logging
mechanism;	for	example,	on	Linux,	most	services	log	their	messages	to	the	file
/var/log/syslog.	That’s	close	to	what	we	need,	but	we	further	require	the	ability	to	see
messages	generated	anywhere	on	the	network.



Generating	Log	Messages:	/rosout
How	can	we	share	log	messages	(which	could	be	errors,	warnings,	debugging	information,
etc.)	throughout	a	ROS	system?	Naturally,	we’ll	use	ROS	topics.	Specifically,	there’s	a
special	ROS	topic,	/rosout,	that	carries	all	log	messages	from	all	nodes.	The	/rosout
topic	is	of	type	rosgraph_msgs/Log:

user@hostname$	rosmsg	show	rosgraph_msgs/Log

byte	DEBUG=1

byte	INFO=2

byte	WARN=4

byte	ERROR=8

byte	FATAL=16

std_msgs/Header	header

		uint32	seq

		time	stamp

		string	frame_id

byte	level

string	name

string	msg

string	file

string	function

uint32	line

string[]	topics

The	rosgraph_msgs/Log	message	is	designed	to	allow	any	node	to	publish	a	log	message
so	that	it	can	be	viewed	by	anyone	else	on	the	network.	You	can	think	of	/rosout	as	an
enhanced	print():	instead	of	just	printing	a	string	to	the	console,	you	send	that	string,
along	with	a	bunch	of	useful	metadata,	to	anyone	who	wants	to	know	about	it.	In	fact,	a
well-written	ROS	node	won’t	use	print()	at	all,	because	those	printed	strings	will	be	seen
only	by	someone	who	happens	to	glance	at	the	terminal	where	the	node	was	started.
Instead,	ROS	nodes	publish	their	log	messages	to	/rosout	so	that	they	can	be	seen	by
anyone.

Of	course,	it	would	be	unreasonable	to	expect	developers	to	construct	and	publish	a
rosgraph_msgs/Log	message	instead	of	just	calling	print().	So,	the	rospy	client	library
provides	functions	that	handle	the	rosgraph_msgs/Log	publishing	but	are	as	easy	to	use	as
print().	For	example,	to	warn	of	a	potentially	problematic	power	situation,	you	might	do
something	like	this:

if	battery_voltage	<	11.0:

		rospy.logwarn('Battery	voltage	low:	%f'%(battery_voltage))

The	rospy.logwarn()	function	does	three	things:

Prints	a	formatted	version	of	the	warning	to	the	console

Prints	a	more	detailed	version	of	the	warning	to	the	node’s	own	log	file	in	~/.ros/log	on
the	machine	where	it	is	running

Contructs	and	publishes	to	the	/rosout	topic	a	message	that	contains	the	warning,	plus
useful	metadata	about	the	node	in	which	it’s	called



The	battery	warning	might	look	like	this	on	the	console	where	the	node	is	started:

[WARN]	[WallTime:	1408299179.063983]	Battery	voltage	low:	10.430000

It	might	look	like	this	in	the	node’s	log	file,	assuming	that	the	node	is	named
battery_monitor:

user@hostname$	tail	-n	1	~/.ros/log/battery_monitor.log

[rosout][WARNING]	2014-08-17	11:12:59,063:	Battery	voltage	low:	10.430000

And	the	corresponding	/rosout	message	that	is	published	might	look	like	this	(the	level	is
rospy.WARN=4):

user@hostname$	rostopic	echo	/rosout

header:

		seq:	1

		stamp:

				secs:	1408299179

				nsecs:	063983

		frame_id:	''

level:	4

name:	/battery_monitor

msg:	Battery	voltage	low:	10.430000

file:	<stdin>

function:	<module>

line:	2

topics:	['/rosout']

In	the	rospy	client	library,	there	is	one	logging	function	for	each	logger	level	(we’ll	learn
more	about	logger	levels	in	the	next	section),	in	order	of	increasing	severity:
rospy.logdebug()

Debugging	statements,	which	nobody	needs	to	see	when	the	system	is	working
properly.

rospy.loginfo()

Informational	statements,	which	don’t	indicate	a	problem,	but	which	might	be	helpful
to	users.

rospy.logwarn()

Warnings,	which	users	should	probably	know	about	because	they	may	affect	the
behavior	of	the	system,	but	which	do	not	indicate	a	failure.

rospy.logerror()

Errors,	which	users	should	know	about	because	something	has	failed;	however,	the
situation	is	recoverable.

rospy.logfatal()

Fatal	errors,	which	users	should	definitely	know	about	because	the	situation	is
unrecoverable.

When	writing	ROS	code,	you	should	always	use	one	of	the	rospy.log*()	functions
instead	of	calling	print()	directly.	They’re	just	as	easy	to	use	as	print(),	and	they	offer



you	a	much	greater	ability	to	debug	your	system,	as	we’ll	see	in	the	next	section.



Logger	Levels
Each	ROS	node	is	configured	with	a	logger	level	that	controls	how	severe	a	log	message
must	be	for	it	to	be	printed,	logged	to	a	file,	and	published	to	/rosout.	The	logger	levels
correspond	to	the	logging	functions	explained	in	the	previous	section,	in	order	of
increasing	severity:	rospy.DEBUG,	rospy.INFO,	rospy.WARN,	rospy.ERROR,	and
rospy.FATAL.

The	default	logger	level	for	a	node	is	rospy.INFO,	which	means	that	messages	that	are	at
least	as	severe	as	rospy.INFO	will	be	printed,	logged,	and	published.	As	a	result,	by
default,	rospy.DEBUG	messages	are	suppressed:	effectively,	rospy.logdebug()	does
nothing.	You	can	think	of	it	like	the	debug	mode	of	a	compiler	or	other	tool:	when	you
need	detailed	debug	information,	it’s	vital	to	be	able	to	see	it,	but	most	of	the	time	you
don’t	want	to	be	distracted	by	the	extra	output,	nor	do	you	want	to	pay	the	performance
penalty	associated	with	producing	it.	In	ROS,	the	penalty	is	the	time	required	to	print	to
screen,	write	to	file,	and	publish	to	/rosout.	Because	for	debug	messages	none	of	this
work	is	done	by	default,	you	can	make	liberal	use	of	rospy.logdebug()	in	your	code
without	any	impact	on	the	system	except	when	someone	asks	to	see	those	messages.

When	you	do	want	to	see	the	debug	messages	from	a	node,	you	need	to	change	its	logger
level.	If	you	have	access	to	the	code,	you	can	make	this	change	by	passing	the	log_level
keyword	argument	to	rospy.init_node()	when	initializing	the	node.	For	example:

rospy.init_node('battery_monitor',	log_level=rospy.DEBUG)

Following	that	initialization,	the	node	will	print,	log,	and	publish	messages	that	are	at	least
as	severe	as	rospy.DEBUG	(which	is	all	log	messages).	Usually,	you	would	make	such	a
change	temporarily,	only	while	you’re	actively	debugging	a	problem	with	the	node.

You	can	also	change	the	logger	level	in	the	other	direction.	For	example,	if	your	node	is
making	a	lot	of	calls	to	rospy.loginfo(),	and	you	want	to	focus	on	the	warnings,	then
you	could	change	its	logger	level	to	rospy.WARN:

rospy.init_node('battery_monitor',	log_level=rospy.WARN)

Following	that	initialization,	both	rospy.DEBUG	and	rospy.INFO	messages	will	be
suppressed.

But	it’s	not	always	convenient	(or	possible)	to	change	the	code	in	a	node	for	debugging
purposes,	so	ROS	provides	a	service	call	mechanism	for	changing	logger	levels	at
runtime.	Every	ROS	node	advertises	two	services	in	its	node	namespace:	get_​log⁠gers
and	set_logger_level.	As	the	names	suggest,	these	services	allow	you	to,	respectively,
get	and	set	a	node’s	logger	configuration.	While	you	can	of	course	call	these	services
directly	(e.g.,	with	the	rosservice	command-line	tool),	it’s	easier	and	more	practical	in
most	situations	to	use	rqt_logger_level,	a	graphical	tool	that	allows	you	to	browse	and



configure	the	logger	levels	for	all	nodes	in	a	ROS	system.	Let’s	try	it	out:

user@hostname$	rqt_logger_level

You’ll	see	a	window	similar	to	the	image	in	Figure	21-1.

Using	this	GUI,	you	can	change	the	logger	level	of	any	currently	running	node:	click	on	a
node,	then	a	logger	within	that	node,	then	the	desired	level.	The	new	level	will	persist	for
the	lifetime	of	the	node,	or	until	someone	else	changes	it.	If	the	node	is	restarted,	it	will	go
back	to	its	default	logger	level.

Figure	21-1.	The	rqt_logger_level	GUI	allows	you	to	change	the	debugging	logger	level	of	any	running	ROS	node

Using	rqt_logger_level	(or	the	underlying	get_loggers	service	call),	you’ll	notice	that
nodes	expose	multiple	loggers,	sometimes	a	dozen	or	more.	That’s	because	the	log
message	mechanism	is	extensible,	allowing	the	developer	to	create	custom,	even
hierarchical	loggers	to	organize	the	messages	that	are	produced	by	different	parts	of	a
library	or	tool.	Such	custom	use	of	log	messages	is	beyond	the	scope	of	this	book.	For	our
purposes	in	debugging	a	ROS	system,	such	as	when	configuring	logger	levels	via
rqt_logger_level,	you	want	to	work	with	either	the	logger	named	rosout	(if	the	node
was	written	in	Python)	or	the	logger	named	ros	(if	the	node	was	written	in	C++).



Reading	Log	Messages:	rqt_console
Now	that	we	know	how	to	generate	log	messages	and	configure	logger	levels,	it’s	time	to
start	reading	the	messages.	As	we’ve	seen,	nodes	publish	log	messages	to	the	/rosout
topic,	so	we	could	access	those	messages	by	reading	/rosout	directly,	either	with	a	simple
subscriber	node	or	by	calling	rostopic	echo	/rosout.	But	in	a	large	ROS	system,	there
will	be	many	log	messages	flowing	through	the	network,	and	we	need	a	better	way	to
access	them.

For	this	purpose,	ROS	provides	the	graphical	tool	rqt_console.	You	can	launch	it	just	like
the	other	ROS	tools:

user@hostname$	rqt_console

A	window	will	pop	up	similar	to	the	image	in	Figure	21-2	(in	this	case,	we	were	running	a
simple	node	named	battery_monitor	that	called	rospy.logwarn()	periodically	in	a
loop).



Figure	21-2.	The	rqt_console	GUI	collects	and	displays	debug	messages	from	all	running	ROS	nodes	in	one	console

You	can	heavily	customize	your	view	into	the	log	messages	using	rqt_console.	Here	are
some	of	the	features	that	you’re	likely	to	find	useful,	especially	when	working	with	a	large
ROS	system	(there	are	many	other	features;	check	the	documentation	and	experiment	with
the	interface	to	see	what’s	possible):

Pause	and	resume	message	display,	useful	when	messages	are	scrolling	by	too	quickly
to	see.

Clear	the	accumulated	messages	from	the	display,	useful	when	retrying	a	failing
operation.

Double-click	on	a	message	to	pop	up	a	window	with	the	full	content	of	that	message,

http://wiki.ros.org/rqt_console


for	easier	inspection	and	copying	to	the	clipboard.

Define	filters	to	include	or	exclude	messages	from	display	based	a	variety	of	criteria,	to
allow	you	to	focus	on	just	errors,	or	just	messages	from	one	node,	or	any	other	criterion
of	interest.

Save	accumulated	messages	to	a	file,	for	offline	analysis.

Your	first	step	in	debugging	a	misbehaving	ROS	system	is	to	check	for	relevant	messages
(especially	errors	and	warnings)	with	rqt_console.	In	fact,	any	time	you’re	running	an
ROS	system	comprising	more	than	a	couple	of	nodes,	you	should	have	rqt_console	up,
so	that	you	can	quickly	and	easily	consult	it	if	something	goes	wrong.	Note	that
rqt_console	can	only	display	the	messages	that	it	has	received	since	it	started	running;
starting	rqt_console	after	a	problem	occurs	usually	won’t	tell	you	anything	about	what
caused	the	problem.



/rosout	Versus	/rosout_agg
2107.140While	nodes	publish	their	log	messages	to	/rosout,	if	we	look	under	the	hood,
we’ll	see	that	rqt_console	doesn’t	actually	subscribe	to	that	topic:

user@hostname$	rosnode	info	rqt_console

Node	[/rqt_console]

Publications:

	*	/rosout	[rosgraph_msgs/Log]

Subscriptions:

	*	/rosout_agg	[rosgraph_msgs/Log]

So,	rqt_console	is	publishing	to	/rosout	(as	do	all	ROS	nodes),	but	it’s	subscribing	to
/rosout_agg,	a	different	topic	of	the	same	type	(rosgraph_msgs/Log).	Why	is	that?	To
understand	the	reason,	consider	a	large	ROS	system,	with	a	hundred	nodes	running	on
multiple	machines	(this	situation	is	not	uncommon	with	complex	robots	such	as	the
Willow	Garage	PR2).	Each	of	those	hundred	nodes	is	publishing	log	messages	to	/rosout.
To	receive	those	messages,	you	need	to	establish	a	connection	to	each	node.	The	time
required	to	establish	each	connection	is	small,	but	when	you	do	it	a	hundred	times,	the
total	time	is	not	small.	If	a	tool	like	rqt_console	had	to	connect	individually	to	each	node,
the	delay	during	startup	would	be	unacceptable:	you	might	wait	tens	of	seconds	while	the
connections	were	established,	and	to	complicate	matters,	along	the	way	you	would	see
messages	from	some	nodes	but	not	others,	which	could	be	misleading.

To	avoid	this	sort	of	startup	delay	and	lack	of	determinism,	ROS	provides	a	node	called
rosout	(which	shouldn’t	be	confused	with	the	topic	by	the	same	name,	/rosout).	The	job
of	rosout	is	to	subscribe	to	/rosout,	taking	in	log	messages	via	direct	connections	to	all
nodes	in	the	system,	then	republish	those	messages	on	an	aggregation	topic,	/rosout_agg.
The	rosout	node	is	started	automatically	for	every	ROS	system	as	part	of	roscore.	As	a
result,	rosout	is	already	up	and	running	before	any	other	node,	and	so	can	establish
/rosout	connections	to	other	nodes	as	they	are	started.	Later,	when	a	tool	like
rqt_console	starts,	it	need	only	make	a	single	connection	to	the	rosout	node	over	the
/rosout_agg	topic,	after	which	it	will	immediately	begin	receiving	the	aggregated	log
messages	from	all	nodes	in	the	system.



Nodes,	Topics,	and	Connections:	rqt_graph	and	rosnode
In	the	previous	section,	we	learned	the	first	rule	of	ROS	debugging:	always	check	for	error
messages	using	rqt_console.	Very	often,	when	your	robot	refuses	to	move,	somewhere	in
the	system	there’s	a	node	complaining	about	the	underlying	cause	of	the	problem	(e.g.,
“No	laser	scans	received;	is	the	sensor	powered	and	connected	to	the	computer?”).	But	it’s
not	always	that	obvious.

A	frequent	cause	of	problems	in	a	ROS	system	is	missing	or	otherwise	incorrect
connections	between	nodes.	In	this	section,	we’ll	learn	how	to	debug	such	problems,	then
walk	through	some	situations	that	commonly	arise.



Visualizing	the	Graph:	rqt_graph
If	you	suspect	that	something	is	wrong	with	the	connections	in	your	system,	your	first	step
is	to	run	rqt_graph,	a	graphical	tool	that	queries	and	visualizes	nodes	and	topics.	To	see
how	it	works,	let’s	start	a	pair	of	nodes	that	will	communicate	with	each	other.	Start	a
roscore,	then	start	an	instance	of	rostopic	to	publish	a	string	on	the	chatter	topic,	once
per	second	(for	clarity	of	demonstration,	we’re	explicitly	setting	the	node	names	using	the
__name	argument	so	as	to	override	the	random	names	that	would	otherwise	be	generated	to
avoid	name	conflicts):

user@hostname$	rostopic	pub	/chatter	std_msgs/String	\

		-r	1	"Hello	world"	__name:=talker

In	another	terminal,	start	another	instance	of	rostopic	to	listen	to	the	chatter	topic	and
print	the	received	messages	to	console:

user@hostname$	rostopic	echo	/chatter	__name:=listener

Now	start	rqt_graph:

user@hostname$	rqt_graph	__name:=rqt_graph

A	window	will	pop	up	similar	to	the	image	in	Figure	21-3.

Figure	21-3.	The	rqt_graph	GUI	shows	the	current	state	of	nodes	and	topics	in	a	running	ROS	system

The	nodes	are	displayed	as	ovals	and	the	topics	as	boxes,	with	arrows	showing	the
direction	of	the	flow	of	messages.	This	display	is	the	best	way	to	get	a	high-level	view	of



the	structure	of	your	system.	As	with	the	other	graphical	ROS	tools,	there	are	a	variety	of
ways	to	configure	the	presentation	of	the	data,	some	of	which	we’ll	explore	in	the
upcoming	sections.

First,	let’s	get	a	view	of	the	entire	system:	in	the	drop-down	in	the	upper-left	corner,	select
“Nodes/Topics	(all),”	then	uncheck	the	boxes	for	“Hide	dead	sinks”	and	“Hide	debug.”
The	resulting	graph	looks	like	the	image	in	Figure	21-4.

Now	we	can	see	the	rosout	node	mentioned	in	the	previous	section,	along	with	the
/rosout_agg	topic	that	it	publishes	for	use	by	tools	like	rqt_console.	We	also	see
rqt_graph	itself.	In	most	cases,	the	default	view,	which	hides	these	system	nodes	and
topics,	is	appropriate,	but	it’s	good	to	know	how	to	see	all	of	what’s	going	on.

Figure	21-4.	The	options	in	rqt_graph	allow	you	to	reveal	more	or	less	about	a	running	ROS	system



Problem:	Mismatched	Topic	Names
With	the	talker,	listener,	and	rqt_graph	nodes	still	running,	let’s	add	another	publisher
for	/chatter.	This	time,	though,	we’ll	misspell	the	topic	name:

user@hostname$	rostopic	pub	/chatter	std_msgs/String	-r	1	"Hello	world	2"	\

		__name:=talker2

Click	the	refresh	button	in	rqt_graph,	then	select	“Hide	debug.”	You’ll	see	something	like
the	image	in	Figure	21-5.

From	this	view,	it’s	clear	what	the	problem	is	with	the	topic	names.	While	in	this	case,	it’s
a	simple	misspelling,	more	often	it’s	a	mismatch	in	naming	convention	(e.g.,	laser	vs.
lidar)	or	specificity	(e.g.,	camera	vs.	head_camera).	But	the	result	is	the	same:	a
publisher/subscriber	pair	that	you	expect	to	be	connected	are	not,	because	they	disagree	on
the	name	of	the	topic	over	which	they	should	be	communicating.	Diagnosing	this	problem
is	most	easily	done	with	rqt_graph,	wherein	the	disconnected	topics	are	easy	to	pick	out.
Having	diagnosed	the	problem,	the	fix	depends	on	how	the	system	is	structured:	while
code	changes	might	be	required,	more	often	it’s	a	matter	of	changing	the	topic	name
remapping	arguments	that	were	passed	to	one	node	or	the	other	(in	complex	systems,
those	remapping	arguments	are	stored	in	roslaunch	files).

Figure	21-5.	A	missing	connection	caused	by	a	misspelled	topic	name	can	be	seen	clearly	in	rqt_graph



Problem:	Mismatched	Topic	Types	and/or	Checksums
Now	let’s	add	a	third	publisher,	this	time	using	the	right	topic	name	but	the	wrong	topic
type;	instead	of	publishing	a	string,	we’ll	send	a	32-bit	integer:

user@hostname$	rostopic	pub	/chatter	std_msgs/Int32	-r	1	"3"	__name:=talker3

Click	the	refresh	button	in	rqt_graph.	You’ll	see	something	like	the	image	in	Figure	21-6.

Everything	looks	good:	talker	and	talker3	are	both	publishing	via	chatter	to	listener.
But	if	we	watch	the	terminal	where	we	started	listener,	we	see	that	it’s	receiving	only
the	string	messages	from	talker,	not	the	integer	messages	from	talker3.	To	dig	in
further,	we’ll	use	the	command-line	tool	rosnode.

Figure	21-6.	Two	nodes	are	publishing	to	a	subscriber,	but	they	disagree	on	the	message	type;	further	investigation	is
needed

First,	let’s	list	the	nodes	in	the	system:

user@hostname$	rosnode	list

/listener

/rosout

/rqt_graph

/talker

/talker2

/talker3

The	problem	is	that	talker3	doesn’t	appear	to	be	communicating	with	listener,	while
talker	is	working	fine.	Let’s	look	at	talker	in	more	detail:

user@hostname$	rosnode	info	talker

Node	[/talker]



Publications:

	*	/chatter	[std_msgs/String]

Subscriptions:	None

Services:

	*	/talker/set_logger_level

	*	/talker/get_loggers

contacting	node	http://localhost:61515/	...

Pid:	65904

Connections:

	*	topic:	/chatter

				*	to:	/listener

				*	direction:	outbound

				*	transport:	TCPROS

Here	we	can	see	the	chatter	topic	is	listed	as	a	publication	of	talker	(which	means	that
it’s	being	advertised).	We	can	further	see	that	there	is	an	outbound	connection	established
on	that	topic	from	talker	to	listener,	which	means	that	data	is	flowing	correctly.	Now
let’s	look	at	talker3	in	detail:

user@hostname$	rosnode	info	talker3

Node	[/talker3]

Publications:

	*	/chatter	[std_msgs/Int32]

Subscriptions:	None

Services:

	*	/talker3/get_loggers

	*	/talker3/set_logger_level

contacting	node	http://localhost:61686/	...

Pid:	66317

Here	we	can	see	that,	while	chatter	is	listed	as	a	publication	of	talker3,	there	are	no
connections	to	listener,	or	to	anyone	else.	That	connection	is	missing	from	talker3
because	the	ROS	type-checking	mechanism	refused	to	establish	the	connection	when	the
two	sides	disagreed	on	what	type	should	be	used.	During	negotiation	of	a	topic
connection,	the	subscriber	(in	this	case,	listener)	tells	the	publisher	what	type	of
message	it	is	expecting;	if	that	type	does	not	match	what	the	publisher	is	sending	on	that
topic,	then	it	drops	the	connection.

This	kind	of	error-checking	happens	behind	the	scenes	all	the	time	in	a	ROS	system.	If
types	don’t	match,	then	connections	are	refused.	The	same	thing	happens	when	types
match,	but	their	checksums	don’t.	For	example,	if	you	have	a	publisher/subscriber	pair
that	agree	on	a	topic	name	and	type	but	have	different	definitions	of	the	message	type
(often	caused	by	different	versions	of	the	.msg	file	on	different	machines),	then	the
connection	between	them	will	be	refused.	When	there	is	a	type	or	checksum	mismatch,
there	are	usually	log	messages	that	inform	you	of	what	has	happened.	For	example,	in	the
present	example,	talker3	produced	this	warning:

[WARN]	[WallTime:	1408327763.423004]	Could	not	process	inbound	connection:\

		topic	types	do	not	match:	[std_msgs/String]	vs.\



		[std_msgs/Int32]{'message_definition':	'string	data\n\n',	'callerid':\

		'/listener',	'tcp_nodelay':	'0',	'md5sum':\

		'992ce8a1687cec8c8bd883ec73ca41d1',	'topic':	'/chatter',	'type':\

		'std_msgs/String'}

As	mentioned	previously,	you	should	always	check	for	such	error	messages	first	(with
rqt_console,	of	course).	But	you	should	also	know	how	to	navigate	your	nodes’
connection	status	by	interrogating	them	with	rosnode.



Problem:	Incorrect	Network	Settings
In	addition	to	type	and	checksum	mismatches,	connections	between	ROS	nodes	often	fail
because	of	incorrect	network	settings.	There	are	many	ways	to	mis-configure	a	network,
and	we	are	not	going	to	address	general	network	debugging	in	this	book.	Here,	we’ll	cover
a	couple	of	cases	that	commonly	arise	in	ROS	systems,	and	we’ll	offer	debugging
procedures	that	can	be	repurposed	for	other	situations.

Imagine	that	you’re	working	with	a	mobile	robot,	with	the	roscore	and	various	ROS
nodes	running	on	the	computer	carried	by	the	robot.	You’re	doing	development	and
debugging	on	your	laptop,	which	is	connected	via	a	wireless	network	to	the	robot’s
computer.	For	clarity,	let’s	assume	hostnames	and	IP	addresses	for	the	computers:

Robot	computer:	robby,	192.168.1.2

Laptop:	hal,	192.168.1.3

For	this	configuration	to	work,	nodes	running	on	the	laptop	hal	will	have	their
environment	variable	ROS_MASTER_URI	pointing	to	robby,	because	that’s	where	the
roscore	is	running.	That	could	be	done	in	bash	using	the	export	keyword:

user@hal$	export	ROS_MASTER_URI=192.168.1.2

A	common	problem	in	this	situation	is	that	ROS	topic	communication	will	work	in	one
direction	but	not	the	other.	For	example,	subscribers	on	hal	can	receive	data	from
publishers	on	robby,	but	subscribers	on	robby	cannot	receive	data	from	publishers	on	hal.
A	particularly	common	example	of	this	problem	happens	when	running	rviz	on	the	laptop
and	the	navigation	stack	on	the	robot:	you	can	see	the	sensor	data	reported	by	the	robot
visualized	in	rviz,	but	you	cannot	set	the	robot’s	pose	or	send	it	navigation	goals.

When	you	encounter	this	kind	of	situation,	your	first	step	is	to	use	rostopic	to	check	what
hostname	is	being	used	by	nodes	running	on	each	machine.	Say	that	you’re	unable	to	send
messages	via	the	/initialpose	topic	(used	to	set	the	robot’s	initial	pose)	from	rviz	on
hal	to	move_base	(a	node	in	the	navigation	stack)	on	robby.	You	should	check	the	list	of
publishers	and	subscribers	for	/initialpose,	which	might	look	like	this:

user@hostname$	rostopic	info	initialpose

Type:	geometry_msgs/PoseWithCovarianceStamped

Publishers:

	*	/rviz	(http://localhost:56171/)

	Subscribers:

		*	/move_base	(http://robby:53992/)

See	the	problem?	The	publisher,	rviz,	is	telling	potential	subscribers	that	it	can	be
contacted	at	the	hostname:_port	address_	localhost:56171.	The	port	number	is	probably
fine	(we’ll	talk	more	about	that	shortly),	but	the	hostname	is	not.	The	move_base	node,



which	is	running	on	robby,	will	fail	when	it	tries	to	contact	rviz	at	localhost:56171,
because	rviz	is	running	on	hal.	From	the	perspective	of	nodes	running	on	robby,
localhost	means	robby,	not	hal.

This	is	a	classic	example	of	a	computer	not	knowing	its	own	name:	hal	doesn’t	know	its
name,	so	it	does	the	best	that	it	can	in	topic	advertisements	by	using	localhost,	which
will	at	least	make	sense	to	nodes	running	on	hal.	In	a	properly	configured	network	with
properly	configured	machines,	this	kind	of	problem	should	not	occur,	but	it	is	nonetheless
fairly	common.	In	general,	every	computer	involved	in	a	ROS	system	must	know	the
name	or	address	by	which	other	the	computers	will	be	able	to	contact	it.

If	you	can,	you	should	fix	the	configuration	of	your	computers	and/or	network	so	that	they
all	use	valid,	externally	addressable	names.	But	that	is	not	always	possible	(e.g.,	if	you	do
not	have	superuser	privileges	on	a	computer).	In	that	case,	you	can	use	some	hooks	that
ROS	offers	to	override	its	default	name	lookup	logic.	Specifically,	you	can	set	the
ROS_HOSTNAME	environment	variable	before	starting	nodes	on	the	mis-configured	machine.
For	example,	to	solve	the	specific	problem	described	here,	you	would	set	ROS_HOSTNAME
on	hal	before	starting	rviz:

user@hostname$	export	ROS_HOSTNAME=hal

user@hostname$	rviz

Then	the	output	from	rostopic	info	/initialpose	would	include:

...

Publishers:

	*	/rviz	(http://hal:56171/)

...

That	will	be	enough	so	long	as	the	name	hal	can	be	resolved	to	an	IP	address.	But	if	hal
was	assigned	an	address	dynamically	from	a	DHCP	server,	then	it’s	possible	that	the	name
hal,	while	better	than	localhost,	still	won’t	be	resolvable	by	nodes	running	on	robby
(again,	this	should	not	happen,	but	it	does).	In	that	case,	you	can	specify	the	IP	address
explicitly	using	the	ROS_IP	environment	variable:

user@hostname$	export	ROS_IP=192.168.1.3

user@hostname$	rviz

Then	the	output	from	rostopic	info	/initialpose	would	include:

...

Publishers:

	*	/rviz	(http://192.168.1.3:56171/)

...

If	that	doesn’t	do	it,	then	the	problem	is	likely	that	the	firewall	settings	on	hal	are
preventing	inbound	connections	on	port	56171.	By	default,	many	operating	systems	use
software	firewalls	that	limit	inbound	TCP	or	UDP	connections	to	a	specific	set	of	ports



that	are	used	to	provide	well-known	services	like	ssh	or	http.	Because	ROS	publishers
might	use	any	port,	and	because	there	are	often	many	publishers	using	many	different
ports,	ROS	requires	complete	bidirectional	connectivity	between	all	pairs	of	machines,	on
all	ports.	An	easy	way	to	meet	this	requirement	is	to	change	your	firewall	to	allow
incoming	connections	on	all	ports	(essentially,	disable	the	firewall).

If	you	cannot	or	prefer	not	to	change	your	firewall	settings,	then	we	recommend	that	you
establish	a	virtual	private	network	(VPN)	between	the	computers	in	your	network.
Because	the	VPN	is	authenticated	and	encrypted,	there	is	no	need	for	a	firewall	to	protect
connections	within	it.	There	are	multiple	VPN	tools	to	choose	from;	a	widely	used	open
source	tool	is	OpenVPN,	which	creates	a	new	network	interface,	with	a	new	IP	address,	on
each	computer.	If	you	use	a	tool	like	OpenVPN,	then	you	should	almost	certainly	set
ROS_IP	on	all	computers	to	ensure	that	they	are	advertising	their	VPN-specific	IP
addresses.	The	configuration	of	a	VPN	is	outside	the	scope	of	this	book,	but	there	are
many	good	resources	regarding	this	topic	online	and	in	other	books.



Sensor	Fusion:	rviz
In	the	previous	sections,	we	covered	problems	related	to	error	reporting	and	connection
handling.	What	if	all	of	the	nodes	are	connected	properly,	and	they’re	not	raising	any
errors,	but	the	robot	is	still	not	behaving	properly?	A	good	place	to	start	is	using	rviz	to
visualize	the	relevant	sensor	data	from	the	robot.	You	can	start	rviz	just	like	the	other
ROS	tools:

user@hostname$	rviz

The	details	of	what	to	visualize	will	depend	on	your	application.	In	addition,	rviz	is	a
powerful	tool,	and	its	heavily	configurable	feature	set	is	outside	the	scope	of	this	book.
Here	a	few	tips	to	help	with	debugging	common	problems:

Visualize	data	from	multiple	sensors	simultaneously.	For	example,	if	you’re	using	a
laser	and	a	depth	camera,	visualize	them	together	in	a	common	coordinate	frame	and
look	for	differences.	Assign	a	different	color	to	each	sensor	to	make	it	easy	to
distinguish	them.

Increase	the	decay	time	on	a	sensor	stream	to	check	it	for	consistency	over	time.	For
example,	if	you’re	using	a	depth	camera	on	a	mobile	robot,	try	setting	the	decay	time
for	the	depth	camera	point	cloud	to	five	seconds,	then	move	the	robot	around	and	check
the	consistency	of	consecutive	scans.

Visualize	each	stage	of	a	sensor-processing	pipeline.	For	example,	if	you	are	running
camera	images	through	a	series	of	filters,	be	sure	to	publish	the	image	output	of	each
filter	so	that	you	can	check	the	intermediate	results	in	addition	to	the	final	result.

Wherever	you	can,	publish	visual	debugging	messages	using	the	visualiza⁠tion_​
msgs/Marker	type.	This	message	allows	you	to	create,	modify,	and	delete	geometric
shapes	of	various	of	kinds.	For	example,	if	you	are	estimating	the	pose	of	an	object
from	sensor	data,	then	publish	that	estimated	pose	as	an	arrow	so	that	you	can	visually
check	the	result	against	other	sensor	data.



Plotting	Data:	rqt_plot
While	rviz	is	the	right	tool	for	gaining	a	high-level	view	of	the	sensor	state	of	your
system,	sometimes	you	want	to	examine	individual	values.	If	you	are	debugging	the
behavior	of	a	position	controller	for	a	joint	in	a	robot	arm,	for	example,	you	might	want	to
examine	the	time	series	of	computed	torques,	or	the	position	errors,	or	some	other
quantity.	For	this	purpose,	we	use	rqt_plot,	which	supports	2D	plotting	of	any	numeric
data	that	is	published	in	a	ROS	system.

As	an	example,	Example	21-1	shows	a	node	that	generates	a	sine	wave	on	the	topic	/sin,
of	type	std_msgs/Float64.

Example	21-1.	sine_wave.py
#!/usr/bin/env	python

import	math,	time

import	rospy

from	std_msgs.msg	import	Float64

rospy.init_node('sine_wave')

pub	=	rospy.Publisher('sin',	Float64)

while	not	rospy.is_shutdown():

		msg	=	Float64()

		msg.data	=	math.sin(4*time.time())

		pub.publish(msg)

		time.sleep(0.1)

Run	sine_wave.py;	then	in	another	terminal,	run	rqt_plot,	telling	it	to	plot	the	data	field
of	the	/sin	topic:

user@hostname$	rqt_plot	/sin/data

You’ll	see	a	continuous	plot	of	the	sine	wave,	similar	to	the	image	in	Figure	21-7.

Figure	21-7.	The	rqt_plot	GUI	produces	2D	plots	of	any	numeric	data	published	in	a	ROS	system



It’s	often	helpful	to	plot	multiple	values	at	the	same	time	to	compare	how	they	vary	over
time.	Example	21-2	shows	a	node	that	generates	a	cosine	wave	on	the	/cos	topic,	also	of
type	std_msgs/Float64.

Example	21-2.	cosine_wave.py
#!/usr/bin/env	python

import	math,	time

import	rospy

from	std_msgs.msg	import	Float64

rospy.init_node('cosine_wave')

pub	=	rospy.Publisher('cos',	Float64)

while	not	rospy.is_shutdown():

		msg	=	Float64()

		msg.data	=	math.cos(4*time.time())

		pub.publish(msg)

		time.sleep(0.1)

With	sine_wave.py	still	running,	run	cosine_wave.py;	then	in	another	terminal,	run
rqt_plot,	this	time	asking	it	to	plot	data	from	both	topics:

user@hostname$	rqt_plot	/sin/data	/cos/data

Now	you’ll	see	a	continuous	plot	of	both	waves,	with	the	expected	phase	difference
between	them,	similar	to	the	image	in	Figure	21-8.

Figure	21-8.	The	rqt_plot	GUI	can	plot	multiple	data	values	simultaneously

The	rqt_plot	GUI	offers	a	number	of	features,	including	stopping	and	starting	plotting,
panning	and	zooming,	configuring	subplots,	and	exporting	images.



Data	Logging	and	Analysis:	rosbag	and	rqt_bag
The	complement	to	live	data	visualization,	data	logging	is	also	a	vital	debugging	tool.	It	is
common	in	ROS	systems	to	log	data	to	file	for	later	analysis	and	playback.	Data	logging
works	as	you	might	expect:	subscribe	to	the	topic(s)	that	you	want	to	log,	and	then	write
incoming	messages	to	disk.	In	fact,	you	could	easily	write	your	own	node	to	log	data	for
your	application.

However,	you	shouldn’t	write	your	own	logger,	because	ROS	provides	a	powerful,	general
logging	tool	called	rosbag.	The	rosbag	tool	is	able	to	log	data	of	any	type	from	any	ROS
topic,	all	to	a	single	file.	By	convention,	the	resulting	log	files	have	the	extension	.bag	and
are	referred	to	as	“ROS	bags,”	or	simply,	“bags.”



Logging	and	Playing	Back	Data:	rosbag
Let’s	see	how	to	record	data	from	one	topic.	Start	a	roscore,	then	run	rosbag,	telling	it	to
record	from	the	chatter	topic	and	write	the	output	to	a	file	call	chatter.bag	(we	are	giving
a	specific	filename	here	for	clarity;	in	general,	you	should	let	rosbag	autogenerate	a
timestamp-based	name	for	its	output	file):

user@hostname$	rosbag	record	-O	chatter.bag	/chatter

[	INFO]	[1408922392.770333000]:	Subscribing	to	/chatter

[	INFO]	[1408922392.773664000]:	Recording	to	chatter.bag.

In	another	terminal,	use	rostopic	pub	to	publish	at	10	Hz	to	chatter:

user@hostname$	rostopic	pub	/chatter	std_msgs/String	-r	10	"Hello	world"

Let	rostopic	pub	run	for	about	10	seconds,	then	kill	both	it	and	rosbag	record.	Now
you	should	have	a	file	called	chatter.bag,	which	contains	the	messages	that	were	published
to	the	chatter	topic.	Let’s	look	inside	it:

user@hostname$	rosbag	info	chatter.bag

path:								chatter.bag

version:					2.0

duration:				12.9s

start:							Aug	24	2014	16:23:54.80	(1408922634.80)

end:									Aug	24	2014	16:24:07.70	(1408922647.70)

size:								14.1	KB

messages:				130

compression:	none	[1/1	chunks]

types:							std_msgs/String	[992ce8a1687cec8c8bd883ec73ca41d1]

topics:						/chatter			130	msgs				:	std_msgs/String

The	rosbag	info	command	interrogates	the	bag	and	presents	the	metadata,	including	time
and	duration	and	the	number	and	types	of	messages	contained	within	it.	Here	we	can	see
that	we	captured	130	messages	of	type	std_msgs/String	on	the	chatter	topic.	If	we	had
logged	multiple	topics	and/or	types	(which	is	common),	those	names	would	be	listed	as
well.

Playing	back	the	data	from	a	bag	is	just	as	easy	as	recording	it.	With	your	roscore	still
running,	start	up	rostopic	echo	to	be	ready	to	print	the	messages	to	console:

user@hostname$	rostopic	echo	/chatter

Nothing	happens	yet,	because	there	is	no	publisher	of	data	on	the	chatter	topic.	Now	use
rosbag	play	to	read	the	bag	and	play	it	back:

user@hostname$	rosbag	play	chatter.bag

[	INFO]	[1408923117.746632000]:	Opening	chatter.bag

Waiting	0.2	seconds	after	advertising	topics…	done.

Hit	space	to	toggle	paused,	or	's'	to	step.



In	the	terminal	where	you	ran	rostopic	echo,	you’ll	see	the	messages	displayed	on	the
screen:

data:	Hello	world

---

data:	Hello	world

---

data:	Hello	world

---

...

The	console	output	from	rostopic	echo	will	continue	until	all	of	the	data	in	the	bag	has
been	played	back,	at	which	point	rosbag	play	will	exit.

This	example	is	intentionally	simple,	but	the	underlying	system	is	very	powerful.	Using
rosbag,	you	can	record	the	message	stream	from	any	ROS	topic,	then	play	it	back	later.	To
the	subscribing	nodes,	the	messages	will	be	indistinguishable	from	the	original
publications.	As	a	result,	you	can	often	test	and	debug	large	parts	of	your	system
exclusively	from	logged	data	in	bags.	A	very	common	use	case	is	to	play	back	a	bag	along
with	the	relevant	nodes	from	your	application,	and	visualize	the	result	in	rviz.

The	rosbag	tool	offers	many	options.Here	are	some	tips	on	usage:

To	record	all	data	within	a	ROS	system,	run	rosbag	record	-a.	But	be	careful	with
this	option,	because	in	a	large	system,	you	could	easily	log	immense	amounts	of	data.
Besides	the	disk	space	and	CPU	cycles	consumed	by	rosbag	record	itself,	subscribing
to	all	topics	can	have	a	nontrivial	performance	impact	on	the	rest	of	system,	especially
for	nodes	that	do	not	compute	certain	results	unless	there	is	at	least	one	active
subscriber	(common	for	image-processing	pipelines).

Bags	are	internally	composed	of	chunks	that	can	be	compressed	to	save	disk	space.	To
compress	the	data	while	recording,	run	rosbag	record	-j	/topic.	To	compress	an
existing	bag,	run	rosbag	compress	topic.bag.	Compressed	bags	can	be	read	by
rosbag	play;	they	will	be	automatically	decompressed	on	the	fly	during	playback.

To	continually	play	back	a	bag	in	a	loop,	run	rosbag	play	-l	topic.bag.	This	option
is	useful	when	testing	processing	pipelines.

To	have	rosbag	play	also	publish	the	time	associated	with	each	message	on	the
special	/clock	topic,	run	rosbag	play	--clock	topic.bag.	But	note	that	handling	of
timestamps	with	the	playback	of	logged	data	can	be	tricky.	For	example,	the	times
published	to	/clock	will	be	in	the	past,	from	when	the	bag	was	created,	and	not	all
nodes	are	robust	to	backward	jumps	in	time.

Whether	you’re	trying	to	understand	what	went	wrong	in	a	particular	situation	where	the
robot	misbehaved	or	you’re	tuning	the	parameters	of	your	perception	pipeline,	bags	are	an
important	part	of	any	development	and	debugging	process.



Visualizing	Bags:	rqt_bag
Similar	to	how	you	use	rqt_graph	to	inspect	the	structure	of	a	ROS	system,	it	can	be
helpful	to	inspect	the	structure	of	a	bag.	For	this	purpose,	ROS	provides	the	rqt_bag	tool.
You	can	run	this	like	the	other	ROS	tools,	giving	it	the	name	of	a	bag	to	operate	on:

user@hostname$	rqt_bag	chatter.bag

A	window	will	pop	up	looking	something	like	the	image	in	Figure	21-9.

Figure	21-9.	The	rqt_bag	GUI	allows	you	to	visually	inspect	and	operate	on	logged	data

Using	rqt_bag,	you	can	see	at	a	glance	how	many	topics	were	recorded	and	how
frequently	messages	on	each	topic	were	received,	and	you	can	introspect	the	contents	of
the	messages.	You	can	play	back	and	optionally	loop	over	the	entire	bag	or	a	section	of	it,
or	you	can	step	through	it	one	message	at	a	time.	You	can	also	save	a	section	of	the	bag	as
its	own	bag,	allowing	you	to	work	with	a	particular	sequence	of	messages.



Analyzing	ROS	Bags	with	Other	Tools:	rostopic	echo	-b
It’s	common	to	work	with	data	from	ROS	bags	in	other,	non-ROS	tools,	such	as	gnuplot,
GNU	Octave,	or	MATLAB.	For	this	purpose,	you’ll	often	want	to	produce	a	text
presentation	of	the	data	that	can	be	easily	parsed	by	other	tools.	Fortunately,	this	ability	is
built	into	rostopic	echo;	just	tell	it	the	name	of	the	bag	to	read	from:

user@hostname$	rostopic	echo	-b	chatter.bag	/chatter

data:	Hello	world

---

data:	Hello	world

---

data:	Hello	world

---

...

That	format	is	easy	enough	to	read,	but	not	that	easy	to	parse.	So,	let’s	add	the	-p
argument	to	produce	a	comma-separated	format	that	starts	with	an	explanatory	header:

user@hostname$	rostopic	echo	-p	-b	chatter.bag	/chatter

%time,field.data

1408922634801335000,Hello	world

1408922634901209000,Hello	world

1408922635001016000,Hello	world…

Redirect	that	output	to	a	file:

user@hostname$	rostopic	echo	-p	-b	chatter.bag	/chatter	>	chatter.csv

and	you’re	ready	to	read	the	data	into	your	favorite	processing	tool.	You	can	also	process
the	data	yourself	in	Python	using	the	rosbag	library;	some	useful	examples	are	listed	in
the	rosbag	cookbook.

http://wiki.ros.org/rosbag/Cookbook


Summary
In	this	chapter,	we	covered	a	variety	of	tools	and	techniques	that	will	help	you	when
debugging	your	ROS	system.	We	use	these	custom	tools	because	robotics	is	a	challenging
endeavor,	combining	the	complexity	inherent	in	any	software	with	the	need	to	interact
asynchronously	with	the	physical	world.	Writing	good	robotics	software	is	hard,	and	there
are	many	more	ways	to	get	it	wrong	than	right.

While	we	use	custom	tools,	the	principles	of	debugging	a	ROS	system	are	the	same	as
debugging	any	other	system:	when	something	goes	wrong,	you	first	need	to	understand
what	is	happening	and	why.	The	key	is	to	gain	visibility	into	the	workings	of	the	system,
which	is	what	the	tools	described	in	this	chapter	provide.	Once	you	can	see	what’s	going
on,	you’re	on	the	path	to	figuring	out	how	to	fix	it.





Chapter	22.	The	ROS	Community:	Online
Resources

In	this	book,	we	have	explained	how	to	use	the	libraries	and	tools	that	make	up	ROS.
Along	the	way,	we	have	implicitly	been	making	the	argument	that	you	should	use	ROS	for
your	next	robotics	project	because	of	the	technical	merits	of	the	software.	But	that’s	only
part	of	the	story.

As	with	any	large	open	source	project,	much	of	the	strength	of	ROS	derives	not	from	the
software	itself,	but	from	the	community	that	develops,	uses,	and	supports	that	software.	If
ROS	were	a	finished	product	—	a	complete	system	that	satisfied	everyone’s	robotics
needs	—	then	the	community	would	not	play	such	a	prominent	role.	But	ROS	is	not
finished:	it	is	a	living	ecosystem	of	code	and	documentation,	with	thousands	of	people
around	the	world	constantly	fixing,	improving,	and	extending	it.	In	this	chapter,	we’ll
introduce	you	to	the	online	resources	through	which	you	can	connect	with	the	ROS
community	and	hopefully	become	a	contributor	yourself.



Etiquette
First,	let’s	talk	about	good	online	etiquette.	It’s	easy	to	get	right,	as	most	of	us	do	most	of
the	time:	just	behave	in	a	reasonable	manner.	But	it’s	also	easy	to	become	frustrated	when
something	isn’t	working	properly,	or	at	least	not	the	way	that	we	think	it	should	work.	For
those	times,	here	are	a	few	points	to	keep	in	mind:

Assume	good	faith	on	the	part	of	your	fellow	community	members.	The	bug	that	you
found	was	just	a	mistake.	The	missing	documentation	that	you	need	was	just	an
oversight.	The	delay	in	responding	to	your	question	is	just	because	we’re	all	busy.	And
the	seemingly	caustic	response	that	you	received	is	just	a	misinterpretation	of	tone.
We’ll	make	more	and	quicker	progress	by	giving	everyone	the	benefit	of	the	doubt.

Don’t	repeat	questions	on	mailing	lists	or	forums.	The	original	question	will	have	been
seen,	and	if	you	haven’t	gotten	a	response	then	likely	nobody	has	had	time	to	answer
yet.	Alternatively,	it	could	be	that	nobody	knows	the	answer.	In	any	case,	repeating
questions	is	poor	form.

Don’t	try	to	raise	the	priority	of	your	question	or	issue	by	demanding	a	fast	answer	or
listing	personal	deadlines	(homework,	project,	etc.).	Doing	so	is	unlikely	to	generate
sympathy,	and	may	even	have	the	effect	of	slowing	down	the	response.

We’re	all	involved	in	this	project	because	we	want	it	to	continue	to	succeed.	Our
contributions	will	make	the	greatest	if	we	collaborate	politely	and	generously.



The	ROS	Wiki
The	online	hub	of	the	community	is	the	ROS	wiki.	The	wiki	contains	information	about
ROS	as	a	whole	(e.g.,	installation	instructions)	and	documentation	specific	to	ROS
packages,	including	all	of	the	tools	and	libraries	described	in	this	book.	The	wiki	is	also
your	entry	point	to	other	online	resources	(repositories,	trackers,	etc.).

The	backbone	of	the	wiki	is	a	set	of	package	pages,	each	named
http://wiki.ros.org/<package	name>.	For	example,	to	find	documentation	on	the	rospy
package,	you	would	go	to	http://wiki.ros.org/rospy?distro=indigo.	The	package	pages
follow	a	consistent	format	and	are	partially	autogenerated	from	metadata	that	is	extracted
from	the	packages’	code	(see	Figure	22-1).	In	addition	to	introducing	and	explaining	the
purpose	and	usage	of	the	package,	a	good	package	page	will	offer	links	to	related
resources,	such	as	tutorials,	troubleshooting	guides,	change	logs,	and	API	documentation.

The	wiki	is	editable	by	anyone,	including	you,	and	we	rely	on	the	collective	efforts	of	the
community	to	maintain	and	update	it.	Developers	do	their	best	to	write	good
documentation	for	their	packages,	but	documentation	can	almost	always	be	improved	by
users.	When	you	see	an	opportunity	to	improve	a	page	in	the	wiki,	whether	it’s	a	minor
typographical	edit	or	the	addition	of	an	entirely	new	tutorial,	please	do!

Figure	22-1.	The	ROS	wiki:	the	home	for	information	and	documentation	about	ROS	software

http://wiki.ros.org?distro=indigo
http://wiki.ros.org/rospy?distro=indigo


ROS	Answers
When	you	have	a	question	about	ROS	—	from	“How	do	I	do	X?”	to	“Why	doesn’t	Y
work	like	Z?”	—	you	should	visit	ROS	Answers.	ROS	Answers	is	a	Q&A	forum,	similar
in	functionality	to	Stack	Overflow	but	scoped	to	ROS	(see	Figure	22-2).	Because	it	is
designed	specifically	to	handle	questions	and	answers,	ROS	Answers	is	the	best	way	to
address	troubleshooting	queries.

Figure	22-2.	ROS	Answers:	the	Q&A	forum	for	the	ROS	community

Before	asking	a	question,	be	sure	to	search	for	similar	questions	that	have	been	asked	in
the	past.	While	you	might	be	the	first	to	encounter	a	particular	problem,	it’s	often	the	case
that	someone	else	has	been	there	before	and	asked	about	it	at	ROS	Answers.	If	you	don’t
find	an	answer	to	your	question	in	the	archive	(which	at	the	time	of	writing	contained
more	than	18,000	questions),	then	by	all	means	ask	it.	Here	are	some	guidelines	for	asking
good	questions:

Be	as	specific	as	possible.	If	you’re	asking	how	to	do	something,	give	as	much	context
as	you	can;	it	may	be	that,	given	information	about	your	goal,	someone	will	suggest	an
alternative	approach.	If	you’ve	encountered	unexpected	behavior	(e.g.,	something
appears	to	be	broken),	then	provide	steps	to	reproduce	that	behavior.

Where	appropriate,	include	error/warning	messages,	relevant	code	snippets,	debugger
backtraces,	bags	and	other	log	files,	as	well	as	images	and/or	videos	that	demonstrate
the	problem.

Provide	relevant	type	and	version	information	for	your	system.	At	least	the	ROS
distribution	name	(Hydro,	Indigo,	etc.)	should	be	included.	Depending	on	the	nature	of
the	question,	it	may	be	helpful	to	include	names	and	versions	for	specific	ROS

http://answers.ros.org


packages,	the	underlying	operating	system,	and/or	your	hardware.

When	including	output	from	a	program,	such	as	error	or	warning	messages,	always
copy	and	paste	them,	rather	than	re-typing	them.	Small	typing	mistakes	can	make	a	big
difference,	and	it’s	important	to	see	the	exact	output.

Like	the	wiki,	ROS	Answers	is	editable	by	everyone,	including	you,	and	we	rely	on	the
community	to	answer	questions.	If	you	know	the	answer	to	a	question,	answer	it!



Trackers	(Bugs	and	Feature	Requests)
It	may	happen	that	the	answer	to	your	question	at	ROS	Answers	is	something	like,	“Yes,
that	looks	like	a	bug,”	or	perhaps,	“No,	that	capability	hasn’t	been	implemented.”	Or	it
could	be	that	you	have	independently	identified	a	bug	or	missing	feature.	In	any	case,	bugs
and	feature	requests	should	be	reported	to	the	appropriate	issue	tracker.

Because	of	the	distributed	nature	of	ROS	code,	there	is	no	central	issue	tracker	for	ROS.
Rather,	each	package	or	collection	of	packages	has	its	own	issue	tracker.	To	find	the	right
issue	tracker,	you	first	need	to	decide	in	which	package	the	problem	lies.	It’s	OK	if	you’re
not	sure;	make	your	best	guess,	and	the	issue	can	be	migrated	later	if	needed.	Go	that
package’s	page	in	the	wiki	(http://wiki.ros.org/<package	name>),	where	you	should	find	a
link	for	reporting	bugs	and	requesting	features.	If	such	a	link	is	not	available,	follow	the
link	for	the	source,	which	will	take	you	to	the	repository	containing	the	code;	from	there
you	can	navigate	to	the	issue	tracker	for	that	repository.

To	file	a	good	bug	report	or	feature	request,	start	with	the	guidelines	given	in	the	previous
section	for	ROS	Answers.	And	if	you	can,	try	to	supply	a	patch	that	fixes	the	bug	or
implements	the	feature.	The	best	issues,	and	the	ones	that	are	serviced	most	promptly,	are
those	that	come	with	patches.

Like	the	wiki	and	ROS	Answers,	the	ROS	issue	trackers	are	open	to	everyone,	including
you.	If	you	see	a	bug	that	you	can	fix	or	a	feature	that	you	can	implement,	please	do!



Mailing	Lists	and	Special	Interest	Groups
The	primary	ROS	mailing	list	is	ros-users@lists.ros.org.	List	archives	and	subscription
information	can	be	found	at	http://lists.ros.org/mailman/listinfo/ros-users.	The	ros-users@
list	is	used	only	for	announcements	and	discussions	of	general	interest	to	the	ROS
community.	If	you	have	released	a	new	ROS	package	or	are	hosting	a	ROS-related	event,
then	post	it	to	ros-users@.	On	the	other	hand,	if	you	have	a	question	about	how	to	use
ROS,	or	have	found	a	bug,	use	ROS	Answers	and/or	the	issue	trackers,	as	explained	in	the
previous	sections.

Within	the	ROS	community,	there	are	various	subcommunities	that	focus	on	specific
topics,	from	embedded	systems,	to	driver	development,	to	robot	arms.	These
subcommunities	self-organize	into	special	interest	groups,	or	SIGs,	which	have	their	own
mailing	lists	and	discussion	forums.	Information	on	ROS	SIGs,	including	a	list	of	active
groups	and	advice	on	creating	a	new	group,	can	be	found	on	the	wiki.

http://lists.ros.org/mailman/listinfo/ros-users
http://wiki.ros.org/sig


Finding	and	Sharing	Code
As	with	issue	trackers,	there	is	no	single	repository	for	ROS	code.	Instead,	code	is
distributed	throughout	many	different	repositories,	often	on	a	package-by-package	basis.
This	arrangement	allows	for	maximum	flexibility	in	how	and	where	code	is	stored,	what
licenses	are	applied,	and	how	development	and	releases	are	handled.	To	find	the	repository
that	contains	the	code	for	a	particular	package,	follow	the	source’s	link	from	that
package’s	page	in	the	wiki.

People	often	ask	the	question,	“How	can	I	contribute	my	new	package	to	ROS?”	The
answer	is:	put	the	code	in	publicly	accessible	repository,	then	tell	the	community	about	it.
You	can	use	your	favorite	version	control	tool	and	keep	your	code	wherever	you	like
(though	it	is	highly	recommended	that	you	use	git	and	host	the	code	at	GitHub,	which	is
where	most	existing	ROS	software	is	hosted.	To	have	your	repository	indexed	for
inclusion	in	the	ROS	wiki,	you	just	need	to	provide	a	few	pieces	of	information;	for
details,	see	the	tutorial	on	the	ROS	wiki.	You’re	not	giving	the	code	to	ROS	so	much	as
letting	the	ROS	community	know	where	to	find	it.

https://github.com
http://bit.ly/doc_generation


Summary
In	this	chapter,	we	covered	the	online	resources	that	allow	you	to	connect	with	and	join
the	ROS	community.	Whether	you	have	a	troubleshooting	question,	a	bug	to	report,	or	a
new	package	to	announce,	communicating	with	the	community	is	easy	to	do.	ROS	is	a
collaborative	effort,	driven	by	the	needs	and	contributions	of	the	community.	Get
involved,	don’t	be	shy,	and	let	us	know	what	you’re	working	on.





Chapter	23.	Using	C++	in	ROS

We	chose	to	use	Python	for	this	book	for	a	number	of	reasons.	First,	it’s	an	accessible
language	for	people	without	a	lot	of	computer	science	background.	Second,	it	has	a	lot	of
useful	stuff	in	the	core	packages,	which	lets	us	concentrate	on	higher-level	concepts.
Third,	ROS	has	strong	support	for	Python.	Fourth,	we	wanted	to	pick	a	single	language	for
all	of	the	examples	in	the	book,	and	Python	seemed	like	a	reasonable	choice.

However,	sometimes	you’re	going	to	want	to	use	another	language	for	your	ROS
development.	Maybe	some	library	that	you	need	to	use	doesn’t	have	Python	support.
Maybe	you’re	more	comfortable	developing	in	another	language.	Maybe	you	want	the
(often	slight)	speed	advantage	that	a	compiled	language	brings.	In	this	chapter,	we’re
going	to	look	at	how	the	API	in	C++,	one	of	the	other	supported	languages,	differs	from
the	Python	API,	and	how	you	can	translate	the	examples	in	this	book	to	C++.	All	of	the
idioms	and	design	patterns	for	C++,	and	any	other	language	that	has	a	ROS	API,	will	be
the	same:	we’re	still	going	to	use	callbacks,	we’re	still	going	to	pass	messages	over	topics,
and	so	on.	However,	the	syntax	and	specific	data	structures	will	be	a	little	different.	Once
you	learn	how	to	map	the	Python	examples	onto	your	language	of	choice,	then	you’ll	be
able	to	easily	translate	examples	from	one	language	to	another.

The	two	best-supported	language	APIs	in	ROS	are	for	Python	and	C++.	In	this	chapter,
we’ll	concentrate	on	the	C++	API,	but	many	of	the	things	that	we	talk	about	will	apply	to
APIs	in	other	languages.	Once	you	figure	out	the	syntax	and	data	structure	differences,
things	will	start	to	look	the	same,	and	you’ll	be	able	to	change	languages	at	will.



When	Should	You	Use	C	(or	Some	Other	Language)?
When	should	you	use	C++,	or	one	of	the	other	supported	languages?	The	short	answer	is:
when	it	makes	your	life	easier.	Since	ROS	is	inherently	a	distributed	system,	it’s	easy	to
mix	nodes	written	in	different	languages	within	the	same	system,	with	the	messaging
system	(topics,	services,	and	actions)	acting	as	the	glue	that	holds	everything	together.

Sometimes	you	will	have	a	sensor	or	actuator	with	an	API	in	C	or	C++,	and	it	will	be
much	easier	to	wrap	this	up	into	a	ROS	node	if	you	use	C++.	Or,	if	you’re	new	to	Python
but	have	years	of	C++	coding	experience,	you	might	just	be	more	efficient	writing	code	in
C++.	Similarly,	if	you’re	making	extensive	use	of	code	that’s	written	in	C++,	then	it’s
easier	to	wrap	this	up	in	a	C++	node.	You	might	even	be	forced	to	use	C++	because	you’re
maintaining	or	extending	a	package	that	someone	else	wrote	in	C++.

Sometimes,	especially	if	you’re	doing	complex	mathematical	calculations,	you’ll	want	to
write	a	node	in	C++	to	make	it	faster.	Be	careful	about	this,	though,	since	Python	libraries
like	scipy	are	already	very	well	optimized	and	will	most	likely	be	running	the	same	code
as	your	C++	implementation	under	the	hood.	Python	does	introduce	some	slowness,	but
you	should	be	objective	when	you	make	the	decision	to	implement	something	in	C++.	A
C++	node	might	be	faster	than	a	similar	Python	node,	but	does	the	speed	increase	justify
the	extra	development	time	of	writing	and	debugging	the	C++	node?

Whatever	your	reasons	for	using	C++	in	ROS,	whether	they’re	driven	by	programming
language	zealotry	or	by	cold,	hard	facts,	let’s	look	at	how	to	write	and	build	a	ROS	node
with	C++.



Building	C++	with	catkin
The	main	difference	between	C++	and	Python	(for	our	purposes,	at	least)	is	that	C++	is	a
compiled	language,	while	Python	is	an	interpreted	one.	This	means	that	you’re	going	to	be
interacting	more	with	catkin	and	the	ROS	build	system	when	you’re	using	C++.	Every
time	you	make	a	change	to	your	code,	you’re	going	to	have	to	recompile	it	using
catkin_make,	and	depending	on	the	changes	that	you’ve	made,	you	might	also	have	to
edit	some	other	files.

This	need	to	recompile	is,	in	our	opinion,	one	of	the	reasons	to	prefer	Python	for
development.	You	can	iterate	on	changes	faster	with	Python	because	you	don’t	have	to
recompile	your	code.	ROS	is	a	big	software	system,	and	if	your	node	is	complex	and	has
many	dependencies,	your	compile	might	take	a	few	minutes.	This	will	inevitably	slow
down	your	development	process	a	bit.

Putting	our	biases	to	one	side	for	the	moment,	let’s	look	at	the	files	you	need	to	edit	when
using	C++.



package.xml
The	package.xml	file	is	the	place	where	you	declare	all	of	your	dependencies.	When	using
C++,	you	have	to	declare	both	a	build	and	a	runtime	dependency	on	roscpp:

<build_depend>roscpp</build_depend>

<run_depend>roscpp</run_depend>

You	can	either	do	this	manually,	by	editing	the	file,	or	have	catkin_create_pkg	do	it	for
you	when	you	create	the	package:

user@hostname$	catkin_create_pkg	<package	name>	roscpp

You’ll	also	need	to	add	in	dependencies,	both	build	and	runtime,	for	any	additional
packages	that	you	use	in	your	node,	just	as	you	did	when	using	Python.



CMakeLists.txt
You’ll	also	need	to	add	to	the	CMakeLists.txt	file,	so	that	the	build	system	knows	what
you’re	trying	to	do	and	where	to	find	things.	In	particular,	you	need	to	modify	the	file	in
the	directory	where	your	src	directory	lives	(where	your	package.xml	file	also	lives),	not
the	one	at	the	top	of	your	catkin	workspace.	Suppose	you’re	going	to	build	a	node	called
minimal	from	a	single	source	file,	minimal.cpp.	You	first	have	to	let	the	build	system
know	about	the	executable,	and	all	of	the	files	needed	to	build	it:

add_executable(minimal

		src/minimal.cpp

)

This	tells	the	build	system	that	you’re	going	to	build	an	executable	called	minimal	from
the	file	minimal.cpp.	If	you	have	more	than	one	executable	in	your	package,	you	need	to
add	lines	like	this	for	each	one.	If	an	executable	is	built	from	more	than	a	single	source
file,	you	need	to	list	these	files	in	the	body	of	add_executable().

You	also	need	to	tell	the	build	system	about	any	link	dependencies	that	you	have.	At	a
minimum,	this	will	be	the	set	of	dependencies	that	catkin	has	worked	out	for	you,	based
on	the	build	dependencies	in	your	package.xml	file:

target_link_libraries(minimal

		${catkin_LIBRARIES}

)

Again,	you	need	to	add	lines	like	this	for	each	of	the	executables	you	build.	Once	you’ve
got	this	information	in	place,	then	you’re	ready	to	build	your	node.



catkin_make
To	build	your	node,	invoke	catkin_make	from	the	root	of	your	catkin	workspace.	This
will	build	your	code,	and	make	sure	that	everything	that	you	depend	upon	is	up	to	date.	To
make	things	easier	on	you,	you	should	structure	your	directories	according	to	ROS
Enhancement	Proposal	(REP)	128.	Basically,	this	means	that	there	should	be	a	directory
called	src	in	your	catkin	workspace	directory.	Individual	package	directories	should	live
in	this	src	directory.	Within	a	package	directory,	there	should	be	a	package.xml,	a
CMakeLists.txt,	and	another	src	directory	(where	your	source	code	actually	lives):

catkin_workspace/

		src/

				CMakeLists.txt

				package_1/

						CMakeLists.txt

						package.xml

				...

				package_n/

						CMakeLists.txt

						package.xml

		build/

		devel/

You	invoke	catkin_make	from	catkin_workspace.	This	will	build	your	minimal
executable	and	place	it	in	catkin_workspace/devel/lib/<package	name>/minimal.

Now	that	we’ve	seen	how	to	build	a	C++	node,	let’s	look	at	what	goes	into	the	node	itself,
and	how	to	translate	from	the	Python	examples	in	this	book	to	C++.

http://www.ros.org/reps/rep-0128.html


Translating	from	Python	to	C++	(and	Back	Again)
To	understand	how	to	translate	from	the	Python	examples	in	this	book	to	C++,	you	only
really	need	to	know	three	things:	how	a	node	is	put	together,	how	the	three	communication
mechanisms	are	defined,	and	how	to	translate	the	data	structures	from	one	language	to
another.	We’ll	start	by	looking	at	how	to	write	a	minimal	node	in	C++.



A	Simple	Node
Example	23-1	shows	the	code	for	a	minimal	C++	node	in	ROS.

Example	23-1.	minimal.cpp
#include	<ros/ros.h>	

int	main(int	argc,	char	**argv)	{

		ros::init(argc,	argv,	"minimal");		

		ros::NodeHandle	n;		

		ros::spin();		

		return	0;

}

Include	the	basic	ROS	header	information.

Initialize	the	node,	and	give	it	a	name.

Create	a	node	handle.

Give	control	over	to	ROS.

All	ROS	C++	nodes	need	to	include	the	ros.h	header	file.	Nodes	are	initialized	by	a	call	to
init(),	giving	the	command-line	arguments	and	a	name	for	the	node.	Then,	we	create	a
node	handle	that	allows	us	to	create	topics,	services,	and	actions.	We	didn’t	have	to
explicitly	create	a	node	handle	when	using	Python,	since	the	language	was	able	to	do	it	for
us	behind	the	scenes.	This	is	one	of	the	recurring	themes	when	using	C++:	things	often
need	to	be	more	explicitly	specified.

We	need	to	add	both	build	and	runtime	dependencies	on	roscpp	to	the	package.xml	file,
and	modify	our	CMakeLists.txt	to	contain	the	information	shown	in	Example	23-2.

Example	23-2.	CMakeLists.txt
cmake_minimum_required(VERSION	2.8.3)

project(cpp)

find_package(catkin	REQUIRED	roscpp)

add_executable(minimal	src/minimal.cpp)

target_link_libraries(minimal

		${catkin_LIBRARIES}

)

In	this	example,	our	package	is	called	cpp.	Once	all	of	this	information	is	in	place,	we	can
cd	to	our	top-level	catkin	workspace	and	invoke	catkin_make.	This	will	compile	our
code	and	make	sure	all	of	the	dependencies	are	up	to	date.	Once	this	is	done,	we	can	find
the	resulting	executable	in	devel/lib/cpp/minimal,	and	we	can	run	it	with	rosrun	as	usual:

user@hostname$	rosrun	cpp	minimal



Topics
Example	23-3	shows	how	to	set	up	a	topic	publisher	in	C++.	The	basic	approach	(set	up
the	node,	define	the	publisher,	publish	in	a	loop)	is	the	same	as	in	Python,	but	the	details
are	a	little	different.

Example	23-3.	topic_publisher.cpp
#include	<ros/ros.h>

#include	<std_msgs/Int32.h>		

int	main(int	argc,	char	**argv)	{

		ros::init(argc,	argv,	"count_publisher");

		ros::NodeHandle	node;

		ros::Publisher	pub	=	node.advertise<std_msgs::Int32>("counter",	10);	

		ros::Rate	rate(1);		

		int	count	=	0;

		while	(ros::ok())	{		

				std_msgs::Int32	msg;	

				msg.data	=	count;

				pub.publish(msg);		

				++count;

				rate.sleep();		

		}

		return	0;		

}

Include	the	definition	of	the	message	we’re	going	to	use.

Create	the	publisher.

Create	a	Rate	instance	to	control	the	publishing	rate.

Loop	while	the	node	is	alive.

Create	a	message	and	populate	its	data	field.

Publish	the	message.

Wait	for	a	while.

Return	success.

The	two	notable	parts	of	this	code	are	the	creation	of	the	topic	publisher,	and	the	loop
condition.	To	create	a	publisher,	we	use	the	syntax:

ros::Publisher	pub	=	node.advertise<std_msgs::Int32>("counter",	10);



This	is	a	function	defined	as	part	of	the	NodeHandle	class,	templated	on	the	type	of
message	that’s	being	sent.	The	parameters	are	the	topic	name,	and	the	buffer	size.	The
loop	condition:

while	(ros::ok())	{

will	evaluate	to	true	as	long	as	the	node	is	running	and	has	not	received	a	Ctrl-C	to	shut	it
down.

The	corresponding	topic	subscriber	node	is	shown	in	Example	23-4,	and	is	even	simpler.

Example	23-4.	topic_subscriber.cpp
#include	<ros/ros.h>

#include	<std_msgs/Int32.h>

#include	<iostream>

void	callback(const	std_msgs::Int32::ConstPtr	&msg)	{		

		std::cout	<<	msg->data	<<	std::endl;

}

int	main(int	argc,	char	**argv)	{

		ros::init(argc,	argv,	"count_subscriber");

		ros::NodeHandle	node;

		ros::Subscriber	sub	=	node.subscribe("counter",	10,	callback);		

		ros::spin();

}

Define	the	callback	function.

Create	the	subscriber.

As	with	the	publisher,	the	subscriber	is	called	on	the	node	instance,	but	this	time	we	don’t
need	a	template	argument	since	it	can	be	calculated	from	the	type	of	the	callback
parameter.	The	three	arguments	are	the	topic	name,	the	buffer	size,	and	the	callback
function.

The	trickiest	part	is	the	callback	function:

void	callback(const	std_msgs::Int32::ConstPtr	&msg)	{

This	function	should	have	a	return	type	of	void,	and	a	single	argument	that	is	a	const
reference	to	a	const	pointer	to	the	message	type.	In	this	instance,	the	message	type	is
std_msgs::Int32,	and	this	has	a	type	of	ConstPtr	defined	within	it.	In	general,	the
argument	for	a	callback	dealing	with	messages	of	type	T	should	have	an	argument	of	type
const	T::ConstPtr	&.	When	building	the	message	definition,	catkin	will	make	sure	that
the	type	ConstPtr	is	defined	for	your	message	types.	Note	that	ConstPtr	is	a	reference-
counted	smart	pointer.	You’re	not	expected	to	call	delete()	on	this	when	you’re	done
with	the	message.



TIP
Although	we’ve	used	one	particular	signature	for	the	callback	here	(using	ConstPtr),	there	are	actually
several	that	will	work	just	as	well	(they	all	resolve	to	the	same	underlying	types).	We	suggest	that	you	use
signatures	like	this	in	your	code,	but	don’t	be	surprised	if	you	see	a	different,	but	equivalent,	signature	in
someone	else’s	code.

Note	that,	when	accessing	the	data	from	the	message,	you	should	use	the	dereferencing
operator	->:

std::cout	<<	msg->data	<<	std::endl;

As	you	can	see,	the	basic	structure	and	idioms	of	a	C++	node	are	the	same	as	those	of	a
Python	node,	even	if	the	syntax	is	a	little	different.	This	is	also	true	for	services	and
actions.



Services
Defining	and	using	services	is	largely	the	same	as	defining	and	using	topics.	Example	23-
5	shows	how	to	define	the	word	counting	service	from	Chapter	4	in	C++.

Example	23-5.	service_server.cpp
#include	<ros/ros.h>

#include	<cpp/WordCount.h>

bool	count(cpp::WordCount::Request	&req,		

	 			cpp::WordCount::Response	&res)	{

		l	=	strlen(req.words);

		if	(l	==	0)

				count	=	0;

		else	{

				count	=	1;

				for(int	i	=	0;	i	<	l;	++i)

						if	(req.words[i]	==	'	')

	 ++count;

		}

		res.count	=	count;

		return	true;

}

int	main(int	argc,	char	**argv)	{

		ros::init(int	argc,	char	**argv,	"count_server");

		ros::NodeHandle	node;

		ros::ServiceServer	service	=	node.advertiseService("count",	count);		

		ros::spin();		

		return	0;

}

Define	the	callback	function.

Create	the	server.

Give	control	over	to	ROS.

The	main	differences	here	are	that	the	callback	function	takes	two	arguments:	the	request,
of	type	WordCount::Request,	and	a	response,	of	type	WordCount::Response.	Again,	these
are	provided	automatically	when	you	build	the	service	definition.	The	return	value	is
placed	in	the	response	argument,	and	the	callback	returns	true	or	false,	indicating	success
or	failure.	Once	again,	we	advertise	it	through	the	node	handle.

Example	23-6	shows	how	to	use	the	service.

Example	23-6.	service_client.cpp
#include	<ros/ros.h>

#include	<cpp/WordCount.h>

#include	<iostream>

int	main(int	argc,	char	**argv)	{



		ros::init(argc,	char	**argv,	"count_client");

		ros::NodeHandle	node;

		ros::ServiceClient	client	=	node.serviceClient<cpp::WordCount>("count");		

		cpp::WordCount	srv;		

		srv.request.words	=	"one	two	three	four";

		if	(client.call(srv))		

				std::cerr	<<	"success:	"	<<	srv.response.count	<<	std::endl;		

		else

				std::cerr	<<	"failure"	<<	std::endl;

		return	0;

}

Create	the	service	client.

Create	a	data	structure	for	the	request	and	response.

Call	the	service,	testing	for	success.

Access	the	response	through	the	data	structure.

Again,	we	make	a	call	on	the	node	handle,	templated	on	the	service	data	type,	to	set	up	the
client.	We	then	create	an	instance	of	the	service	data	type,	and	fill	in	the	request
information.	The	actual	service	call	is	made	using	the	client.call(srv)	call,	which	will
return	true	if	successful,	and	false	otherwise.	Note	that	it	is	the	responsibility	of	the	service
server	to	return	this	value.	Finally,	we	can	access	the	results	of	the	call	through	the	data
structure’s	response	field.



Summary
In	this	final	chapter,	we’ve	seen	how	to	translate	some	of	the	Python	code	from	the	rest	of
the	book	into	C++.	All	of	the	idioms	and	design	patterns	that	we’ve	talked	about
previously	are	the	same,	regardless	of	the	language	that	you	write	your	code	in;	only	the
syntax	and	details	change.	Once	you	learn	how	to	make	these	cosmetic	changes,	you
should	be	able	to	switch	from	Python	to	C++	and	back	again	with	ease.

Of	course,	we’ve	only	scratched	the	surface	of	the	C++	API	in	this	chapter.	Dealing	with	it
completely	would	take	a	whole	other	book.	However,	if	you’re	already	familiar	with	the
language,	then	you	should	be	able	to	take	this	chapter	in	one	hand	and	the	ROS	wiki
documentation	in	the	other,	and	start	crafting	your	own	ROS	nodes	in	C++.	Or,	you	can
choose	a	simpler	life,	and	stick	with	Python.	Your	choice.





Index

Symbols

/	(forward	slash),	Names,	Namespaces,	and	Remapping

/rosout,	generating	log	messages	with,	Generating	Log	Messages:	/rosout-Generating
Log	Messages:	/rosout

3D	visualization	(see	rviz	(ROS	visualization))

˜	(tilde),	The	Speech	Server

A

abstraction,	ROS	Message	Interface

Ackerman	platforms,	Actuation:	Mobile	Platform

action	definition	file,	Defining	an	Action

action	interface,	pyttsx,	Action	Interface

action	server

basic,	Implementing	a	Basic	Action	Server-Checking	That	Everything	Works	as
Expected

checking,	Checking	That	Everything	Works	as	Expected,	Checking	That
Everything	Works	as	Expected

for	TTS	software,	Action	Interface

more	sophisticated,	Using	the	More	Sophisticated	Action

actions,	Actions-Summary

checking	with	action	client,	Checking	That	Everything	Works	as	Expected

defining,	Defining	an	Action-Defining	an	Action

services	vs.,	Actions,	Summary



topics	vs.,	Summary

using,	Using	an	Action-Checking	That	Everything	Works	as	Expected

actuation,	Actuation:	Mobile	Platform-Actuation:	Manipulator	Arm

manipulator	arm,	Actuation:	Manipulator	Arm

mobile	platform,	Actuation:	Mobile	Platform-Actuation:	Mobile	Platform

wander-bot,	Sensing	and	Actuation:	Wander-bot!

actuators

adding	your	own	to	ROS,	Adding	Your	Own	Actuators-Summary

FakeActuator	for	simulation,	A	(Fake)	Actuator

wrapper	design	considerations,	Designing	the	ROS	Wrapper-Designing	the	ROS
Wrapper

wrapper	for	continuous	actuation,	Design	1:	Continuous	Actuation

wrapper	for	infrequent,	extended	actuation,	Design	3:	Infrequent,	Extended
Actuation-Summary

wrapper	for	infrequent,	instantaneous	actuation,	Design	2:	Infrequent,
Instantaneous	Actuation

Adaptive	Monte	Carlo	Localization,	Localizing	the	Robot	in	a	Map

advertising,	Publishing	to	a	Topic

with	rospy.Publisher,	Publishing	to	a	Topic,	The	Master	and	Friends:	roscore

ALVAR	marker	system,	Stockroom	Simulation-Stockroom	Simulation,	Picking	Up
the	Item-Picking	Up	the	Item

amcl

for	TortoiseBot	nav	stack,	Configuring	the	Navigation	Stack

possible	poses	maintained	by,	Navigating	in	rviz

to	localize	robot	in	a	map,	Localizing	the	Robot	in	a	Map-Tips	for	Setting	a	Better



Initial	Pose

anonymous	publish/subscribe	system,	rosrun

arm,	robotic	(see	CougarBot)

autonomous	navigation,	Your	Own	Mobile	Robot:	Part	2-Summary

for	TortoiseBot,	Your	Own	Mobile	Robot:	Part	2-Summary

laser	sensor	for,	Laser	scanners,	Adding	a	Laser	Sensor-Adding	a	Laser	Sensor

localizing/commanding	TortoiseBot	with	rviz,	Using	rviz	to	Localize	and
Command	a	Navigating	Robot-Using	rviz	to	Localize	and	Command	a	Navigating
Robot

nav	stack	configuration	for,	Configuring	the	Navigation	Stack-Configuring	the
Navigation	Stack

verifying	transforms	for,	Verifying	Transforms-Verifying	Transforms

autostarting,	Implementing	a	Basic	Action	Server

axis	of	rotation,	Joints,	Links,	and	Kinematic	Chains

B

bags

analyzing	with	rostopic	echo-b,	Analyzing	ROS	Bags	with	Other	Tools:	rostopic
echo	-b

for	debugging,	Data	Logging	and	Analysis:	rosbag	and	rqt_bag-Logging	and
Playing	Back	Data:	rosbag

recording	data	with	rosbag,	Recording	Data	with	rosbag-Recording	Data	with
rosbag

using	when	building	maps,	Recording	Data	with	rosbag-Recording	Data	with
rosbag,	Building	Maps

visualizing	with	rqt_bag,	Visualizing	Bags:	rqt_bag

balancing	wheeled	mobile	robot,	Actuation:	Mobile	Platform



bash	alias,	Stockroom	Simulation

binary	image,	Detecting	the	Line-Detecting	the	Line

binary	sensors,	Sensors

bins

creating,	Stockroom	Simulation-Stockroom	Simulation

driving	Stockroom-bot	to,	Driving	to	Bins-Summary

picking	up	items	from,	Picking	Up	the	Item-Picking	Up	the	Item

BSD	license,	Philosophy

bug	reports,	Trackers	(Bugs	and	Feature	Requests)

Bullet	Physics	Library,	Gazebo

bump	sensors,	Sensors

C

C++

and	checksum	in	generated	message	definitions,	Defining	a	New	Message

and	CMakeLists.txt,	CMakeLists.txt

and	package.xml,	package.xml

building,	with	catkin,	Building	C++	with	catkin-catkin_make

catkin	and,	catkin,	Workspaces,	and	ROS	Packages

catkin_make	and,	catkin_make

defining	services,	Services-Services

minimal	node	in,	A	Simple	Node

native	data	types,	Defining	Your	Own	Message	Types

Python	and,	Building	C++	with	catkin



reasons	for	using,	When	Should	You	Use	C	(or	Some	Other	Language)?

topic	publisher	setup,	Topics-Topics

translating	from	Python	to,	Translating	from	Python	to	C++	(and	Back	Again)-
Services

using,	in	ROS,	Using	C++	in	ROS-Summary

callback	function

actions	and,	Implementing	a	Basic	Action	Server

and	Python–C++	translation,	Topics

services	and,	Implementing	a	Service

topics	and,	Subscribing	to	a	Topic

cameras

depth,	Depth	cameras-Depth	cameras

Kinect,	Depth	cameras,	Reading	Sensor	Data,	rviz

message	types	for,	Visual	cameras

visual,	Visual	cameras

Cartesian	space,	Joint	Space

casters,	Actuation:	Mobile	Platform

catkin,	catkin,	Workspaces,	and	ROS	Packages

and	catkin_make,	catkin_make

and	CMakeLists.txt,	CMakeLists.txt

and	package.xml,	package.xml

building	C++	with,	Building	C++	with	catkin-catkin_make

catkin_make,	Workspaces,	catkin_make

for	defining	actions,	Defining	an	Action



for	defining	message	types,	Defining	a	New	Message

for	defining	services,	Defining	a	Service

cells,	in	map	files,	Maps	in	ROS-Maps	in	ROS

checksums,	debugging	mismatched,	Problem:	Mismatched	Topic	Types	and/or
Checksums-Problem:	Mismatched	Topic	Types	and/or	Checksums

Chess-bot,	Moving	R2	Around	a	Chessboard-Summary

chessboard	modeling	for,	Modeling	a	Chessboard-Modeling	a	Chessboard

hand	operation,	Operating	the	Hand-Operating	the	Hand

playing	back	chess	games	with,	Playing	Back	a	Famous	Chess	Game-Playing	Back
a	Famous	Chess	Game

using	chessboard	coordinates	for	arm	positions,	Moving	R2	Around	a	Chessboard

chessboard

modeling,	Modeling	a	Chessboard-Modeling	a	Chessboard

moving	R2	(Chess-bot)	around	a,	Moving	R2	Around	a	Chessboard

chunks,	Logging	and	Playing	Back	Data:	rosbag

client	libraries,	Philosophy

closed-loop	systems,	Follow-bot

(see	also	follow-bot)

CMake	macros,	catkin

CMakeLists.txt,	catkin,	CMakeLists.txt

code,	finding	and	sharing,	Finding	and	Sharing	Code

collision	data,	Simulation	in	Gazebo

color	detection

by	follow-bot,	Detecting	the	Line



RGB	vs.	HSV,	Detecting	the	Line

computational	subsystems,	Computation

configuration,	parameters	and,	Parameters:	rosparam

coordinate	frames,	tf:	Coordinate	Transforms-tf

maps	vs.	images,	Maps	in	ROS

poses,	positions,	and	orientations,	Poses,	Positions,	and	Orientations

tf	and,	tf

costmaps,	Seeing	What’s	Going	On-Seeing	What’s	Going	On,	Configuring	the
Navigation	Stack-Configuring	the	Navigation	Stack

CougarBot,	CougarBot-Summary

configuring	MoveIt	for,	Configuring	MoveIt-Configuring	MoveIt

hardware	driver	for,	Hardware	Driver

modeling	with	URDF,	Modeling	the	Robot:	URDF-Modeling	the	Robot:	URDF

ROS	message	interface	for,	ROS	Message	Interface

rviz	for	sending	goals	to,	Using	rviz	to	Send	Goals-Using	rviz	to	Send	Goals

simulation	in	Gazebo,	Simulation	in	Gazebo-Simulation	in	Gazebo

steps	in	creating,	CougarBot

Ctrl-C,	roslaunch

D

data

playing	back	with	rosbag,	Logging	and	Playing	Back	Data:	rosbag-Logging	and
Playing	Back	Data:	rosbag

recording	with	rosbag,	Recording	Data	with	rosbag-Recording	Data	with	rosbag

data	logging



and	debugging,	Data	Logging	and	Analysis:	rosbag	and	rqt_bag-Analyzing	ROS
Bags	with	Other	Tools:	rostopic	echo	-b

with	rosbag,	Data	Logging	and	Analysis:	rosbag	and	rqt_bag-Logging	and	Playing
Back	Data:	rosbag

data	plotting,	Plotting	Data:	rqt_plot-Plotting	Data:	rqt_plot

dead	reckoning,	Shaft	encoders

debugging,	Debugging	Robot	Behavior-Summary

analyzing	bags,	Analyzing	ROS	Bags	with	Other	Tools:	rostopic	echo	-b

and	/rosout,	Generating	Log	Messages:	/rosout-Generating	Log	Messages:	/rosout

and	logger	levels,	Logger	Levels-Logger	Levels

data	logging/analysis,	Data	Logging	and	Analysis:	rosbag	and	rqt_bag-Analyzing
ROS	Bags	with	Other	Tools:	rostopic	echo	-b

getting	log	messages,	Log	Messages:	/rosout	and	rqt_console-/rosout	Versus
/rosout_agg

graph	visualization,	Visualizing	the	Graph:	rqt_graph-Visualizing	the	Graph:
rqt_graph

incorrect	network	settings,	Problem:	Incorrect	Network	Settings-Problem:
Incorrect	Network	Settings

mismatched	topic	names,	Problem:	Mismatched	Topic	Names

mismatched	topic	types/checksums,	Problem:	Mismatched	Topic	Types	and/or
Checksums-Problem:	Mismatched	Topic	Types	and/or	Checksums

node	connection	problems,	Nodes,	Topics,	and	Connections:	rqt_graph	and
rosnode-Problem:	Incorrect	Network	Settings

plotting	data,	Plotting	Data:	rqt_plot-Plotting	Data:	rqt_plot

rosbag	for,	Recording	Data	with	rosbag,	Data	Logging	and	Analysis:	rosbag	and
rqt_bag-Logging	and	Playing	Back	Data:	rosbag



rostopic	echo-b,	Analyzing	ROS	Bags	with	Other	Tools:	rostopic	echo	-b

rqt_bag,	Visualizing	Bags:	rqt_bag

rqt_console,	Reading	Log	Messages:	rqt_console-Reading	Log	Messages:
rqt_console

rqt_graph,	Visualizing	the	Graph:	rqt_graph-Visualizing	the	Graph:	rqt_graph

rqt_plot,	Motion	Generator,	Plotting	Data:	rqt_plot-Plotting	Data:	rqt_plot

rviz	for,	Sensor	Fusion:	rviz

sensor	fusion,	Sensor	Fusion:	rviz

smach	and,	Defining	State	Machines	with	smach

visualizing	bags,	Visualizing	Bags:	rqt_bag

degrees	of	freedom	(DOF),	Actuation:	Manipulator	Arm

dependency,	adding,	Publishing	to	a	Topic

depth	cameras,	Depth	cameras-Depth	cameras,	Reading	Sensor	Data

depth	image,	Depth	cameras

developer	tools	(see	tools)

development	philosophy,	ROS,	Philosophy-Philosophy

dextrous	workspace,	Actuation:	Manipulator	Arm

differential	drive,	Actuation:	Mobile	Platform

DOF	(degrees	of	freedom),	Actuation:	Manipulator	Arm

dynamically	stable	robot,	Actuation:	Mobile	Platform

E

edges,	The	ROS	Graph

Elsie	(early	mobile	robot),	TortoiseBot-TortoiseBot



EmPy	template	engine,	Stockroom	Simulation-Stockroom	Simulation

end	effector,	Joints,	Links,	and	Kinematic	Chains

error	messages	(see	log	messages)

etiquette,	online,	Etiquette

event	loops,	pyttsx,	Event	Loops

execute	permissions,	Publishing	to	a	Topic

F

feature	requests,	Trackers	(Bugs	and	Feature	Requests)

feedback,	Actions,	Implementing	a	More	Sophisticated	Action	Server

Fetch	robot,	Fetch,	Driving	to	Bins-Driving	to	Bins

filesystem,	roscd	for	navigation	of,	Navigating	the	Filesystem:	roscd

firewalls,	Problem:	Incorrect	Network	Settings

follow-bot,	Follow-bot-Summary

acquiring	images	for,	Acquiring	Images-Acquiring	Images

detecting	target	line,	Detecting	the	Line-Detecting	the	Line

following	the	target	line,	Following	the	Line-Summary

forward	kinematics,	Inverse	Kinematics-Inverse	Kinematics

forward	slash	(/),	Names,	Namespaces,	and	Remapping

frame	of	reference,	rviz

free	and	open	source	development	philosophy,	Philosophy

G

Gazebo,	Gazebo-Gazebo

and	Kinect	depth	camera,	Reading	Sensor	Data



chessboard	modeling	in,	Modeling	a	Chessboard-Modeling	a	Chessboard

debugging	inertial	data,	Simulation	in	Gazebo

for	CougarBot	simulation,	Simulation	in	Gazebo-Simulation	in	Gazebo

for	developing	manipulation	software,	Chess-bot

for	stockroom	simulation,	Stockroom	Simulation-Stockroom	Simulation

for	TortoiseBot	simulation,	Simulation	in	Gazebo-Simulation	in	Gazebo

installing/running	R2	in,	Installing	and	Running	a	Simulated	R2-Installing	and
Running	a	Simulated	R2

Rotate	tool,	Reading	Sensor	Data

rviz	vs.,	Verifying	Transforms

gazebo_ros	package,	Gazebo

global	costmap,	Seeing	What’s	Going	On-Seeing	What’s	Going	On,	Configuring	the
Navigation	Stack-Configuring	the	Navigation	Stack

global	planner,	The	ROS	Navigation	Stack

goal	pose,	Seeing	What’s	Going	On,	Using	rviz	to	Localize	and	Command	a
Navigating	Robot

goals,	Actions

preempting,	Checking	That	Everything	Works	as	Expected

rviz	and,	Using	rviz	to	Send	Goals-Using	rviz	to	Send	Goals

graph,	ROS	system,	The	ROS	Graph-The	ROS	Graph,	Visualizing	the	Graph:
rqt_graph-Visualizing	the	Graph:	rqt_graph

H

hand,	Chess-bot,	Operating	the	Hand-Operating	the	Hand

hardware	driver

for	CougarBot,	Hardware	Driver



for	TortoiseBot,	Hardware	Driver

Header,	Design	1:	Periodic	Measurements	over	a	Topic,	ROS	Message	Interface

history	of	ROS,	Brief	History

holonomic	platforms,	Actuation:	Mobile	Platform

HSV	(hue,	saturation,	value)	images,	Detecting	the	Line-Detecting	the	Line

I

images

acquiring	for	follow-bot,	Acquiring	Images-Acquiring	Images

maps	vs.,	Maps	in	ROS

inertial	data

debugging	in	Gazebo,	Simulation	in	Gazebo

for	TortoiseBot	simulation,	Simulation	in	Gazebo

installation,	ROS,	Installation

interprocess	communication	(IPC),	Philosophy

intrinsic	distortion,	Visual	cameras

introspection,	tools	for,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and
rossrv-Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

inverse	kinematics,	Inverse	Kinematics

J

joint	encoders,	Joint	Space

joint	space,	Joint	Space-Joint	Space

joint	state,	Joint	Space

joints,	Actuation:	Manipulator	Arm

and	manipulators,	Joints,	Links,	and	Kinematic	Chains



in	URDF,	Modeling	the	Robot:	URDF

types	supported	by	URDF,	Modeling	the	Robot:	URDF

JointState	message,	Shaft	encoders

joint_state_publisher,	Modeling	the	Robot:	URDF-Modeling	the	Robot:	URDF

K

keyboard,	as	teleop-bot	driver,	Keyboard	Driver-Keyboard	Driver

Kinect	camera,	Depth	cameras,	Reading	Sensor	Data,	rviz

kinematic	chains,	Joints,	Links,	and	Kinematic	Chains

kinematics

forward,	Inverse	Kinematics-Inverse	Kinematics

inverse,	Inverse	Kinematics

L

laser	scanners/sensors,	Laser	scanners,	Adding	a	Laser	Sensor-Adding	a	Laser
Sensor

latched	topics,	Latched	Topics

launch	files,	roslaunch

libraries

adding	to	robot,	Adding	a	Software	Library-Summary

client,	Philosophy

pyttsx	speech	library	(see	pyttsx)

limit	switches,	Sensors

linear	joints,	Actuation:	Manipulator	Arm,	Joints,	Links,	and	Kinematic	Chains

lines

detecting,	Detecting	the	Line-Detecting	the	Line



following,	Following	the	Line-Summary

links

and	manipulators,	Joints,	Links,	and	Kinematic	Chains

in	URDF,	Modeling	the	Robot:	URDF

Linux,	Prerequisites,	Installation,	Checking	That	Everything	Works	as	Expected

local	costmaps,	Seeing	What’s	Going	On,	Configuring	the	Navigation	Stack-
Configuring	the	Navigation	Stack

local	planner,	The	ROS	Navigation	Stack,	Seeing	What’s	Going	On

localization

and	topics,	What’s	Going	on	Behind	the	Scenes

candidate	poses,	Localizing	the	Robot	in	a	Map

initial,	Getting	a	Good	Initial	Localization

maps	and,	Starting	a	Map	Server	and	Looking	at	a	Map

of	robot	in	a	map,	Localizing	the	Robot	in	a	Map-Tips	for	Setting	a	Better	Initial
Pose

with	rviz,	Using	rviz	to	Localize	and	Command	a	Navigating	Robot-Using	rviz	to
Localize	and	Command	a	Navigating	Robot

locomotion,	mobile	platform	for,	Actuation:	Mobile	Platform-Actuation:	Mobile
Platform

log	messages

and	logger	levels,	Logger	Levels-Logger	Levels

for	debugging,	Log	Messages:	/rosout	and	rqt_console-/rosout	Versus	/rosout_agg

reading	via	rqt_console,	Reading	Log	Messages:	rqt_console-Reading	Log
Messages:	rqt_console

via	/rosout,	Generating	Log	Messages:	/rosout-Generating	Log	Messages:	/rosout



logger	levels,	Logger	Levels-Logger	Levels

logger	program,	rosrun

M

mailing	lists,	Mailing	Lists	and	Special	Interest	Groups

manipulator	configuration	(vector),	Shaft	encoders

manipulators,	Actuation:	Manipulator	Arm,	Chess-bot-Summary,	CougarBot-
Summary

(see	also	Chess-bot,	CougarBot)

and	inverse	kinematics,	Inverse	Kinematics

and	joint	space,	Joint	Space-Joint	Space

and	joints,	Joints,	Links,	and	Kinematic	Chains

and	kinematic	chains,	Joints,	Links,	and	Kinematic	Chains

and	links,	Joints,	Links,	and	Kinematic	Chains

installing/running	simulated	R2,	Installing	and	Running	a	Simulated	R2-Installing
and	Running	a	Simulated	R2

moving	R2	from	the	command	line,	Moving	R2	from	the	Command	Line

robot	arm,	CougarBot-Summary

simulation	as	key	to	programming	success	with,	The	Key	to	Success

map	coordinate	frame,	Localizing	the	Robot	in	a	Map

maps,	Building	Maps	of	the	World-Summary

building,	Building	Maps-Starting	a	Map	Server	and	Looking	at	a	Map

data	recording	for,	Recording	Data	with	rosbag-Recording	Data	with	rosbag

displaying,	Starting	a	Map	Server	and	Looking	at	a	Map

for	navigating	a	stockroom,	Driving	to	Bins



images	vs.,	Maps	in	ROS

in	ROS,	Maps	in	ROS-Maps	in	ROS

rosbag	and,	Recording	Data	with	rosbag-Recording	Data	with	rosbag

starting	a	map	server,	Starting	a	Map	Server	and	Looking	at	a	Map

map_server,	Starting	a	Map	Server	and	Looking	at	a	Map

and	latched	topics,	Latched	Topics

and	nav	stack,	Configuring	the	Navigation	Stack-Configuring	the	Navigation
Stack

starting,	Starting	a	Map	Server	and	Looking	at	a	Map

master	(tool),	The	Master	and	Friends:	roscore

MD5	checksum,	Defining	a	New	Message

Mecanum	wheels,	Actuation:	Mobile	Platform

message

and	latched	topics,	Latched	Topics

and	localization,	What’s	Going	on	Behind	the	Scenes

and	peer-to-peer	development	philosophy,	Philosophy

defining	new,	Defining	a	New	Message-Defining	a	New	Message

interface	for	CougarBot,	ROS	Message	Interface

interface	for	TortoiseBot,	ROS	Message	Interface-ROS	Message	Interface

using	new,	Using	Your	New	Message

message	definition	files,	Defining	a	New	Message

message	types

defining	your	own,	Defining	Your	Own	Message	Types-When	Should	You	Make	a
New	Message	Type?



determining	appropriateness	of	new,	When	Should	You	Make	a	New	Message
Type?

primitive,	Defining	Your	Own	Message	Types-Defining	Your	Own	Message	Types

Microsoft	Kinect	(see	Kinect	camera)

minimal	C++	node,	A	Simple	Node

mobile	platform,	Actuation:	Mobile	Platform-Actuation:	Mobile	Platform

mobile	robot

autonomous	navigation,	Your	Own	Mobile	Robot:	Part	2-Summary

designing	your	own,	Your	Own	Mobile	Robot-Summary

Elsie	as	inspiration	for,	TortoiseBot-TortoiseBot

hardware	driver,	Hardware	Driver

laser	sensor	for,	Adding	a	Laser	Sensor-Adding	a	Laser	Sensor

localizing/commanding	with	rviz,	Using	rviz	to	Localize	and	Command	a
Navigating	Robot-Using	rviz	to	Localize	and	Command	a	Navigating	Robot

modeling	with	URDF,	Modeling	the	Robot:	URDF-Modeling	the	Robot:	URDF

nav	stack	configuration,	Configuring	the	Navigation	Stack-Configuring	the
Navigation	Stack

ROS	message	interface	for,	ROS	Message	Interface-ROS	Message	Interface

simulation	in	Gazebo,	Simulation	in	Gazebo-Simulation	in	Gazebo

TortoiseBot,	Your	Own	Mobile	Robot-Summary

verifying	transforms,	Verifying	Transforms-Verifying	Transforms

motion	generator,	Motion	Generator-Motion	Generator

motion	planning,	Joints,	Links,	and	Kinematic	Chains

MoveIt



and	Chess-bot	hand	operation,	Operating	the	Hand

and	R2	arm	movement	simulation,	Installing	and	Running	a	Simulated	R2-
Installing	and	Running	a	Simulated	R2

and	rviz,	Using	rviz	to	Send	Goals-Using	rviz	to	Send	Goals

and	stockroom-bot,	Picking	Up	the	Item,	Picking	Up	the	Item-Picking	Up	the	Item

configuring	for	CougarBot,	Configuring	MoveIt-Configuring	MoveIt

move_base

and	nav	stack	performance	tuning,	Summary

and	patrol	node,	Navigating	in	Code

for	TortoiseBot	nav	stack,	Configuring	the	Navigation	Stack-Configuring	the
Navigation	Stack

multilingual	development	philosophy,	Philosophy

N

names,	in	ROS,	Names,	Namespaces,	and	Remapping

namespaces,	Names,	Namespaces,	and	Remapping

NASA/GM	Robonaut	2	(see	R2	(Robonaut	2))

native	data	types,	C++	vs.	Python,	Defining	Your	Own	Message	Types

navigation,	Navigating	About	the	World-Summary

costmaps,	Seeing	What’s	Going	On-Seeing	What’s	Going	On,	Configuring	the
Navigation	Stack-Configuring	the	Navigation	Stack

getting	good	initial	localization,	Getting	a	Good	Initial	Localization

localizing	robot	in	a	map,	Localizing	the	Robot	in	a	Map-Tips	for	Setting	a	Better
Initial	Pose

messages/topics	for	initial	localization,	What’s	Going	on	Behind	the	Scenes

tips	for	setting	better	initial	pose,	Tips	for	Setting	a	Better	Initial	Pose



using	code,	Navigating	in	Code-Navigating	in	Code

with	ROS	nav	stack,	Using	the	ROS	Navigation	Stack-Seeing	What’s	Going	On

navigation	goal,	The	ROS	Navigation	Stack

navigation	maps	(see	maps)

navigation	stack	(nav	stack),	Using	the	ROS	Navigation	Stack-Seeing	What’s	Going
On

configuration	for	TortoiseBot,	Configuring	the	Navigation	Stack-Configuring	the
Navigation	Stack

in	action,	Seeing	What’s	Going	On-Seeing	What’s	Going	On

navigating	in	rviz,	Navigating	in	rviz

steps	in	operation	of,	The	ROS	Navigation	Stack

network	settings,	debugging,	Problem:	Incorrect	Network	Settings-Problem:
Incorrect	Network	Settings

new	message

defining,	Defining	a	New	Message-Defining	a	New	Message

determining	appropriateness	of	creating,	When	Should	You	Make	a	New	Message
Type?

using,	Using	Your	New	Message

nodes,	The	ROS	Graph

catkin_make	and,	catkin_make

debugging	connection	problems,	Nodes,	Topics,	and	Connections:	rqt_graph	and
rosnode-Problem:	Incorrect	Network	Settings

roslaunch	for	starting	multiple	nodes,	Starting	Many	Nodes:	roslaunch-Starting
Many	Nodes:	roslaunch

rosnode	for	inspecting,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and
rossrv



rosrun	for	starting	single	node,	Starting	a	Node:	rosrun

rostest	for	testing	many-node	system,	Testing	a	Many-Node	System:	rostest-Testing
a	Many-Node	System:	rostest

stale	state	cleanup,	The	Master	and	Friends:	roscore

non-holonomic	platforms,	Actuation:	Mobile	Platform

O

octomap	package,	Picking	Up	the	Item

odometry,	Shaft	encoders,	rviz

odom	topic,	rviz,	Configuring	the	Navigation	Stack

online	etiquette,	Etiquette

online	resources,	ROS	community	(see	ROS	community)

Open	Dynamics	Engine,	Gazebo

open	kinematic	chain,	Joints,	Links,	and	Kinematic	Chains

OpenCV,	Follow-bot,	Acquiring	Images,	Detecting	the	Line-Detecting	the	Line

OpenVPN,	Problem:	Incorrect	Network	Settings

optical	limit	switches,	Sensors

orientation,	Poses,	Positions,	and	Orientations

origin	(coordinate	frame	of	reference),	Poses,	Positions,	and	Orientations

P

P-controller,	Following	the	Line-Summary

package.xml,	catkin,	Stockroom	Simulation,	package.xml

pan/tilt	assembly,	Sensors

parameter	server,	roscore

roscore	and,	The	Master	and	Friends:	roscore



rosparam	and,	Parameters:	rosparam

teleop-bot	and,	Parameter	Server-Parameter	Server

patrolling,	On	Patrol-Summary

and	smach_ros	package,	A	Better	Way	to	Patrol

simple	system	for,	Simple	Patrolling

state	machines,	State	Machines-A	Better	Way	to	Patrol

peer-to-peer	development	philosophy,	Philosophy,	roscore

personal	robots,	Actuation:	Manipulator	Arm

PGN	(Portable	Game	Notation),	Playing	Back	a	Famous	Chess	Game

pick	and	place

and	manipulator	arms,	Actuation:	Manipulator	Arm

with	Stockroom-bot,	Picking	Up	the	Item-Picking	Up	the	Item

pin	joints,	Actuation:	Manipulator	Arm,	Joints,	Links,	and	Kinematic	Chains

planar	robots,	Actuation:	Mobile	Platform

playing	back	data,	Logging	and	Playing	Back	Data:	rosbag-Logging	and	Playing
Back	Data:	rosbag

point	clouds,	Depth	cameras

PointCloud2	plugin,	rviz

port	11311,	roscore

Portable	Game	Notation	(PGN),	Playing	Back	a	Famous	Chess	Game

pose,	Localizing	the	Robot	in	a	Map

defined,	Poses,	Positions,	and	Orientations

initial,	Tips	for	Setting	a	Better	Initial	Pose,	Using	rviz	to	Localize	and	Command
a	Navigating	Robot



position,	Poses,	Positions,	and	Orientations

POSIX,	Installation

PR2	robot,	PR2

in	simulated	stockroom,	Driving	to	Bins

state	machine	for	plugging-in	behavior,	State	Machines-State	Machines

primitive	message	types,	Defining	Your	Own	Message	Types-Defining	Your	Own
Message	Types

prismatic	joints,	Actuation:	Manipulator	Arm,	Joints,	Links,	and	Kinematic	Chains

private	parameter	name,	Parameter	Server

Programmable	Universal	Machine	for	Assembly	(PUMA)	robot	arms,	CougarBot

publish/subscribe	communication	mechanism,	Topics,	Mixing	Publishers	and
Subscribers

Publisher,	Publishing	to	a	Topic

publishing

checking,	Checking	That	Everything	Works	as	Expected

mixing	publishers	and	subscribers,	Mixing	Publishers	and	Subscribers

to	a	topic,	Publishing	to	a	Topic-Checking	That	Everything	Works	as	Expected

PUMA	(Programmable	Universal	Machine	for	Assembly)	robot	arms,	CougarBot

Python,	Prerequisites

advantages	of,	Using	C++	in	ROS

and	checksum	in	generated	message	definitions,	Defining	a	New	Message

C++	and,	Building	C++	with	catkin

client	library,	Philosophy

native	data	types,	Defining	Your	Own	Message	Types



slice	notation,	Detecting	the	Line

translating	to	C++,	Translating	from	Python	to	C++	(and	Back	Again)-Services

pyttsx	(speech	library),	Make	Your	Robot	Talk:	pyttsx-Checking	That	Everything
Works	as	Expected

action	interface	for,	Action	Interface

checking,	Checking	That	Everything	Works	as	Expected

event	loops,	Event	Loops

parameters,	Parameters

speech	client,	The	Speech	Client

speech	server,	The	Speech	Server-The	Speech	Server

Q

Quaternion,	Designing	the	ROS	Wrapper-Design	1:	Periodic	Measurements	over	a
Topic

R

R2	(Robonaut	2),	Robonaut	2

as	basis	for	Chess-bot,	Moving	R2	Around	a	Chessboard-Summary

(see	also	Chess-bot)

installing/running	simulated	version	of,	Installing	and	Running	a	Simulated	R2-
Installing	and	Running	a	Simulated	R2

moving	around	a	chessboard,	Moving	R2	Around	a	Chessboard

moving	from	the	command	line,	Moving	R2	from	the	Command	Line

suitability	for	simulation	studies,	The	Key	to	Success

ramping,	Velocity	Ramps-Velocity	Ramps

range	of	motion,	Joints,	Links,	and	Kinematic	Chains

range	sensors,	Sensors



ranges	array,	Reading	Sensor	Data

rate	variable,	Sensing	and	Actuation:	Wander-bot!

recompiling,	Building	C++	with	catkin

reconstruction	algorithm,	Depth	cameras

registration	of	master,	The	Master	and	Friends:	roscore

remapping,	Names,	Namespaces,	and	Remapping

result	(of	action),	Actions

revolute	joints,	Joints,	Links,	and	Kinematic	Chains

RGB	(red,	green,	blue)	values,	Detecting	the	Line

rigid-body	dynamics,	Gazebo

Robonaut	2	(see	R2	(Robonaut	2))

robot	arm	(see	CougarBot)

robot	model	plugin,	rviz

robots,	Complete	Robots

(see	also	specific	robots,	e.g.:	TurtleBot)

robot_state_publisher	node,	Installing	and	Running	a	Simulated	R2

ROS

basic	components	of,	Preface

basics,	Introduction-Summary

development	philosophy,	Philosophy-Philosophy

history	of,	Brief	History

installation,	Installation

key	concepts,	Preliminaries-Summary



ROS	Answers,	ROS	Answers-ROS	Answers

ROS	bags	(see	bags)

ROS	command-line	tools

roscd,	Navigating	the	Filesystem:	roscd

roscore,	roscore,	Parameter	Server-Parameter	Server,	The	Master	and	Friends:
roscore

rosed,	Navigating	the	Filesystem:	roscd

roslaunch,	roslaunch-roslaunch,	Starting	Many	Nodes:	roslaunch-Starting	Many
Nodes:	roslaunch

rosmsg,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rosnode,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rosrun,	rosrun-rosrun,	Starting	a	Node:	rosrun

rosservice,	Checking	That	Everything	Works	as	Expected-Other	Ways	of
Returning	Values	from	a	Service,	Introspection:	rosnode,	rostopic,	rosmsg,
rosservice,	and	rossrv

rossrv,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rostest,	Testing	a	Many-Node	System:	rostest-Testing	a	Many-Node	System:	rostest

rostopic,	Motion	Generator,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,
and	rossrv

ROS	community,	The	ROS	Community:	Online	Resources-Finding	and	Sharing
Code

etiquette,	Etiquette

finding	and	sharing	code,	Finding	and	Sharing	Code

mailing	lists,	Mailing	Lists	and	Special	Interest	Groups

ROS	Answers,	ROS	Answers-ROS	Answers



ROS	wiki,	The	ROS	Wiki

special	interest	groups,	Mailing	Lists	and	Special	Interest	Groups

trackers	(bugs/feature	requests),	Trackers	(Bugs	and	Feature	Requests)

ROS	message	interface

for	CougarBot,	ROS	Message	Interface

for	TortoiseBot,	ROS	Message	Interface-ROS	Message	Interface

ROS	wiki,	The	ROS	Wiki

rosbag

—clock	flag,	Recording	Data	with	rosbag

for	debugging,	Recording	Data	with	rosbag,	Data	Logging	and	Analysis:	rosbag
and	rqt_bag-Logging	and	Playing	Back	Data:	rosbag

for	recording	data	for	map	creation,	Recording	Data	with	rosbag-Recording	Data
with	rosbag

tips	on	usage,	Logging	and	Playing	Back	Data:	rosbag

rosbash	suite,	Navigating	the	Filesystem:	roscd

rosout	node,	The	Master	and	Friends:	roscore

rospy	library,	The	Master	and	Friends:	roscore,	Logger	Levels

ros_control	plugin,	Simulation	in	Gazebo

ROS_MASTER_URI,	roscore

rotary	joints,	Joints,	Links,	and	Kinematic	Chains

rqt_*	interfaces

rqt_bag,	Visualizing	Bags:	rqt_bag

rqt_console,	Reading	Log	Messages:	rqt_console-Reading	Log	Messages:
rqt_console



rqt_graph	visualizer,	rosrun,	Visualizing	the	Graph:	rqt_graph-Visualizing	the
Graph:	rqt_graph

rqt_logger_level,	Logger	Levels

rqt_plot,	Motion	Generator,	Plotting	Data:	rqt_plot-Plotting	Data:	rqt_plot

rviz	(ROS	visualization),	rviz-rviz

and	transform	tree,	Picking	Up	the	Item

for	debugging	sensor	problems,	Sensor	Fusion:	rviz

for	localization,	Localizing	the	Robot	in	a	Map,	Using	rviz	to	Localize	and
Command	a	Navigating	Robot-Using	rviz	to	Localize	and	Command	a	Navigating
Robot

for	sending	goals	to	CougarBot,	Using	rviz	to	Send	Goals-Using	rviz	to	Send	Goals

frame	of	reference	for,	rviz

Gazebo	vs.,	Verifying	Transforms

navigating	in,	Navigating	in	rviz

S

scalar	readings,	Sensors

SDF	(Simulation	Description	Format),	Modeling	a	Chessboard-Modeling	a
Chessboard

sensor,	Sensors-Shaft	encoders

adding	your	own,	Adding	Your	Own	Sensors-Design	4:	Sensor	Measurements	on
Demand

data	for	wander-bot,	Reading	Sensor	Data-Reading	Sensor	Data

depth	cameras,	Depth	cameras-Depth	cameras

FakeSensor	for	simulation,	A	(Fake)	Sensor

laser	scanners,	Laser	scanners



shaft	encoders,	Shaft	encoders-Shaft	encoders

visual	cameras,	Visual	cameras

wrapper	design	considerations,	Designing	the	ROS	Wrapper

wrapper	design	for	measurements	on	demand,	Design	4:	Sensor	Measurements	on
Demand

wrapper	design	for	periodic	measurements	over	a	topic,	Design	1:	Periodic
Measurements	over	a	Topic-Design	1:	Periodic	Measurements	over	a	Topic

wrapper	design	for	streaming	measurements	over	a	topic,	Design	2:	Streaming
Measurements	over	a	Topic

wrapper	design	for	streaming	measurements	published	at	a	fixed	rate,	Design	2:
Streaming	Measurements	over	a	Topic

sensor	data

for	improving	initial	localization,	Getting	a	Good	Initial	Localization

reading,	for	wander-bot,	Reading	Sensor	Data-Reading	Sensor	Data

sensor	head,	Sensors

sensor_msgs/Image,	Visual	cameras

service	definition	file,	Defining	a	Service

services,	Services-Summary

actions	vs.,	Actions,	Summary

C++/Python	translation,	Services-Services

calling,	Other	Ways	to	Call	Services

checking	with	client	node,	Checking	That	Everything	Works	as	Expected

checking	with	rosservice,	Checking	That	Everything	Works	as	Expected

defining,	Defining	a	Service-Defining	a	Service



implementing,	Implementing	a	Service-Other	Ways	to	Call	Services

returning	values	from,	Other	Ways	of	Returning	Values	from	a	Service

topics	vs.,	Summary

using,	Using	a	Service-Using	a	Service

setup.bash	file,	Workspaces

shaft	encoders,	Shaft	encoders-Shaft	encoders

shebang,	Publishing	to	a	Topic

SimpleActionClient	class,	Using	an	Action

SimpleActionServer	class,	Implementing	a	Basic	Action	Server-Implementing	a
Basic	Action	Server

simulation

of	manipulators,	The	Key	to	Success

of	R2,	Installing	and	Running	a	Simulated	R2-Installing	and	Running	a	Simulated
R2

visualization	vs.,	Verifying	Transforms

Simulation	Description	Format	(SDF),	Modeling	a	Chessboard-Modeling	a
Chessboard

simulators,	Simulators-Other	Simulators

alternatives	to	Gazebo	and	Stage,	Other	Simulators

Gazebo,	Gazebo-Gazebo

(see	also	Gazebo)

Stage,	Stage

simultaneous	localization	and	mapping	(SLAM),	Stage

single-axis	revolute	joints,	Actuation:	Manipulator	Arm



skid	steering,	Actuation:	Mobile	Platform

slam_gmapping,	Building	Maps-Building	Maps

slice	notation,	Detecting	the	Line

smach

for	advanced	state	machine,	A	Slightly	More	Relevant	Example-A	Slightly	More
Relevant	Example

for	defining	state	machines,	Defining	State	Machines	with	smach-Defining	State
Machines	Procedurally

for	simple	state	machine,	Defining	State	Machines	with	smach-Defining	State
Machines	with	smach

smach_ros	package,	A	Better	Way	to	Patrol

software	libraries,	Adding	a	Software	Library-Summary

special	interest	groups,	ROS	community,	Mailing	Lists	and	Special	Interest	Groups

speech	library	(see	pyttsx)

Stage	(2D	simulator),	Stage

STAIR	robot,	rosrun

stale	state,	The	Master	and	Friends:	roscore

State	class,	Defining	State	Machines	with	smach

state	machines,	State	Machines-State	Machines

advanced	example,	A	Slightly	More	Relevant	Example-A	Slightly	More	Relevant
Example

basics,	State	Machines-State	Machines

defining	procedurally,	Defining	State	Machines	Procedurally-Defining	State
Machines	Procedurally

defining	with	smach,	Defining	State	Machines	with	smach-Defining	State



Machines	Procedurally

in	ROS,	State	Machines	in	ROS

patrolling	with,	Patrolling	with	State	Machines-A	Better	Way	to	Patrol

simple	example,	Defining	State	Machines	with	smach-Defining	State	Machines
Procedurally

StateMachine	class,	Defining	State	Machines	with	smach

static	map,	Configuring	the	Navigation	Stack-Configuring	the	Navigation	Stack

statically	stable	robot,	Actuation:	Mobile	Platform

steered	casters,	Actuation:	Mobile	Platform

stereo	camera,	Visual	cameras

stockroom

adding	items	to,	Stockroom	Simulation

bin	labels,	Stockroom	Simulation-Stockroom	Simulation

simulation	for	Stockroom-bot,	Stockroom	Simulation-Stockroom	Simulation

Stockroom-bot,	Stockroom-bot-Summary

driving	to	bins,	Driving	to	Bins-Driving	to	Bins

picking	up	item	with,	Picking	Up	the	Item-Picking	Up	the	Item

stockroom	simulation	for,	Stockroom	Simulation-Stockroom	Simulation

strings,	in	tf,	tf

structured	light	image,	Depth	cameras

subgraphs,	The	ROS	Graph

subscribing

checking,	Checking	That	Everything	Works	as	Expected



mixing	publishers	and	subscribers,	Mixing	Publishers	and	Subscribers

to	a	topic,	Subscribing	to	a	Topic-Checking	That	Everything	Works	as	Expected

subsystems,	Subsystems-Computation

computation,	Computation

manipulator	arm,	Actuation:	Manipulator	Arm

mobile	platform,	Actuation:	Mobile	Platform-Actuation:	Mobile	Platform

sensors,	Sensors-Shaft	encoders

T

Tab	key,	The	Tab	Key

target	line

detecting	by	follow-bot,	Detecting	the	Line-Detecting	the	Line

following	by	follow-bot,	Following	the	Line-Summary

task	space,	Joint	Space

teleop-bot,	Teleop-bot-Summary

development	pattern,	Development	Pattern

driving,	Let’s	Drive!

keyboard	driver,	Keyboard	Driver-Keyboard	Driver

motion	generator,	Motion	Generator-Motion	Generator

parameter	server,	Parameter	Server-Parameter	Server

rviz	for,	rviz-rviz

velocity	ramps	for,	Velocity	Ramps-Velocity	Ramps

teleoperation,	Teleop-bot

(see	also	teleop-bot)

termios	library,	Keyboard	Driver



testing,	tools	for,	Testing	a	Many-Node	System:	rostest-Testing	a	Many-Node	System:
rostest

text-to-speech	(TTS)	software	(see	pyttsx)

tf	(transform)	package,	tf

header	field	in,	ROS	Message	Interface

view_frames.py	program,	Picking	Up	the	Item

thin	development	philosophy,	Philosophy

tilde	(˜),	The	Speech	Server

time-of-flight	depth	cameras,	Depth	cameras

timestamps,	Design	1:	Periodic	Measurements	over	a	Topic

tools,	Tools-Summary

for	introspection,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv-
Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

roscd,	Navigating	the	Filesystem:	roscd

roscore,	The	Master	and	Friends:	roscore

roslaunch,	Starting	Many	Nodes:	roslaunch-Starting	Many	Nodes:	roslaunch

rosmsg,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rosnode,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rosparam,	Parameters:	rosparam

rosrun,	Starting	a	Node:	rosrun

rosservice,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rossrv,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

rostest,	Testing	a	Many-Node	System:	rostest-Testing	a	Many-Node	System:	rostest

rostopic,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv



tools-based	development	philosophy,	Philosophy

topics,	Topics-Summary

actions	vs.,	Summary

and	localization,	What’s	Going	on	Behind	the	Scenes

debugging	mismatched	names,	Problem:	Mismatched	Topic	Names

debugging	mismatched	types/checksums,	Problem:	Mismatched	Topic	Types
and/or	Checksums-Problem:	Mismatched	Topic	Types	and/or	Checksums

defined,	Topics

defining	your	own	message	types,	Defining	Your	Own	Message	Types-When
Should	You	Make	a	New	Message	Type?

latched,	Latched	Topics

mixing	publishers	and	subscribers,	Mixing	Publishers	and	Subscribers

publisher	setup,	Topics-Topics

publishing	to,	Publishing	to	a	Topic-Checking	That	Everything	Works	as	Expected

sensor	wrappers	for	periodic	measurements	over,	Design	1:	Periodic
Measurements	over	a	Topic-Design	1:	Periodic	Measurements	over	a	Topic

sensor	wrappers	for	streaming	measurements	over,	Design	2:	Streaming
Measurements	over	a	Topic

services	vs.,	Summary

subscribing	to,	Subscribing	to	a	Topic-Checking	That	Everything	Works	as
Expected

TortoiseBot	(see	mobile	robot	(TortoiseBot))

trackers	(bugs/feature	requests),	Trackers	(Bugs	and	Feature	Requests)

tracks,	Actuation:	Mobile	Platform

transform	tree,	Picking	Up	the	Item



transforms,	verifying

for	Cougarbot,	Verifying	Transforms-Verifying	Transforms

for	TortoiseBot,	Verifying	Transforms-Verifying	Transforms

transmissions,	Simulation	in	Gazebo

TTS	(text-to-speech)	software	(see	pyttsx)

TurtleBot,	TurtleBot

(see	also	follow-bot,	teleop-bot,	wander-bot)

and	localization,	Localizing	the	Robot	in	a	Map

and	map	creation,	Building	Maps,	Building	Maps

Twist	message,	Actuation:	Mobile	Platform,	Teleop-bot

types,	debugging	mismatched,	Problem:	Mismatched	Topic	Types	and/or
Checksums-Problem:	Mismatched	Topic	Types	and/or	Checksums

U

Ubuntu	14.04	LTS	(Trusty	Tahr),	Installation

Ubuntu	Linux,	Prerequisites,	Installation

Unix	software	development	philosophy,	Philosophy

unstructured	light	depth	cameras,	Depth	cameras

URDF	(Unified	Robot	Description	Format)

joint	types	supported	by,	Modeling	the	Robot:	URDF

modeling	CougarBot	with,	Modeling	the	Robot:	URDF-Modeling	the	Robot:
URDF

modeling	TortoiseBot	with,	Modeling	the	Robot:	URDF-Modeling	the	Robot:
URDF

urdf_to_graphiz,	Modeling	the	Robot:	URDF

V



velocity	ramps,	Velocity	Ramps-Velocity	Ramps

view_frames.py	program,	Picking	Up	the	Item

virtual	private	networks	(VPNs),	Problem:	Incorrect	Network	Settings

visual	cameras,	Visual	cameras

visualization

rviz	(see	rviz)

simulation	vs.,	Verifying	Transforms

W

wander-bot,	Wander-bot-Summary

actuation,	Sensing	and	Actuation:	Wander-bot!

creating	package	for,	Creating	a	Package-Creating	a	Package

range	estimation	from	sensor	data,	Reading	Sensor	Data-Reading	Sensor	Data

sensing,	Sensing	and	Actuation:	Wander-bot!

wiki,	ROS,	The	ROS	Wiki

workcell,	Chess-bot

workspaces,	Workspaces,	Actuation:	Manipulator	Arm

world	coordinate	frame,	Localizing	the	Robot	in	a	Map

wrappers,	Philosophy

for	continuous	actuation,	Design	1:	Continuous	Actuation

for	infrequent,	extended	actuation,	Design	3:	Infrequent,	Extended	Actuation-
Summary

for	infrequent,	instantaneous	actuation,	Design	2:	Infrequent,	Instantaneous
Actuation

for	periodic	measurements	over	a	topic,	Design	1:	Periodic	Measurements	over	a
Topic-Design	1:	Periodic	Measurements	over	a	Topic



for	sensor	measurements	on	demand,	Design	4:	Sensor	Measurements	on	Demand

for	streaming	measurements	over	a	topic,	Design	2:	Streaming	Measurements	over
a	Topic

for	streaming	measurements	published	at	a	fixed	rate,	Design	2:	Streaming
Measurements	over	a	Topic

with	actuators,	Designing	the	ROS	Wrapper-Designing	the	ROS	Wrapper

with	sensors,	Designing	the	ROS	Wrapper

X

XML

and	Gazebo,	Modeling	a	Chessboard

and	launch	files,	roslaunch

and	Python	template	engine,	Stockroom	Simulation-Stockroom	Simulation

and	roslaunch,	Starting	Many	Nodes:	roslaunch

and	URDF	(see	URDF	(Unified	Robot	Description	Format))

Y

YAML

and	maps,	Maps	in	ROS

and	parameter	values,	Parameters:	rosparam

and	rostopic,	Motion	Generator

and	rostopic	pub,	Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

for	parameter	values,	Parameters:	rosparam

yaw	rate,	Teleop-bot





About	the	Authors

Morgan	Quigley	is	a	cofounder	of	the	Open	Source	Robotics	Foundation	(OSRF),	which
develops	and	maintains	the	Robot	Operating	System	(ROS).	He	came	to	OSRF	after
receiving	a	PhD	in	computer	science	at	Stanford	University,	where	he	created	one	of	the
ancestors	of	ROS	as	part	of	the	Stanford	AI	Robot	(STAIR)	project	in	2006	and	2007.	As
it	became	clear	that	the	future	of	robotics	software	was	in	collaborative	development,	this
effort	led	him	to	cofound	the	ROS	project	with	many	other	engineers.	His	research
interests	include	robot	software	systems,	open	source	software	and	firmware,	embedded
systems	design,	mechatronics,	and	sensor	design.

Brian	Gerkey	is	cofounder	and	CEO	of	OSRF.	Prior	to	joining	OSRF,	Brian	was	Director
of	Open	Source	Development	at	Willow	Garage.	Previously,	Brian	was	a	Computer
Scientist	in	the	Artificial	Intelligence	Center	at	SRI,	and	before	that,	a	postdoctoral
research	fellow	in	the	Artificial	Intelligence	Lab	at	Stanford	University.	Brian	received	his
PhD	in	computer	science	from	the	University	of	Southern	California	(USC)	in	2003,	his
MS	in	computer	science	from	USC	in	2000,	and	his	BSE	in	computer	engineering,	with	a
secondary	major	in	mathematics	and	a	minor	in	robotics	and	automation,	from	Tulane
University	in	1998.	Since	2008,	Brian	has	worked	on	the	ROS	Project,	which	develops
and	releases	one	of	the	most	widely	used	robot	software	platforms	in	robotics	research	and
education	(and	soon	industry).	He	is	founding	and	former	lead	developer	on	the	open
source	Player	Project,	which	continues	to	maintain	widely	used	robot	simulation	and
development	tools.

Bill	Smart	is	an	associate	professor	at	Oregon	State	University,	where	he	codirects	the
Robotics	program.	His	research	interests	span	the	areas	of	mobile	robotics,	machine
learning,	human–robot	interaction,	and	the	interaction	between	robotics	and	the	law.	Bill
has	been	writing	software	for	robots	for	over	two	decades,	and	doing	active	research	and
development	of	robot	software	architectures	for	over	15	years.	At	Oregon	State
University,	he	codirects	the	Robotics	program	and	teaches	classes	in	robotics	and
computer	programming	at	both	the	undergraduate	and	graduate	levels.	He	has	been	a	ROS
user	since	the	beginning	and	was	involved	in	some	of	the	early	planning	workshops	for	the
system.	In	2010–11,	he	spent	a	15-month	sabbatical	at	Willow	Garage,	developing
software	for	PR2	robots	and	enjoying	the	weather	in	California.





Colophon

The	animal	on	the	cover	of	Programming	Robots	with	ROS	is	a	Salim	Ali’s	fruit	bat
(Latidens	salimalii).	Named	after	the	famed	Indian	ornithologist,	the	Salim	Ali’s	fruit	bat
remains	a	rare	species	about	which	little	is	known,	more	than	60	years	since	it	was	first
collected	and	mistaken	for	a	short-nosed	fruit	bat.	Confined	to	rainforests	at	the	southern
tip	of	the	Indian	Peninsula,	in	the	vicinity	of	the	Western	Ghats	mountain	range	that	runs
along	the	Arabian	Sea,	the	Salim	Ali’s	fruit	bat	is	one	of	the	more	endangered	species	in	a
region	acknowledged	as	one	of	the	world’s	most	biodiverse.

Members	of	the	megabat	suborder	to	which	fruit	bats	belong	do	not	feed	on	insects.
Rather,	they	use	long	tongues	to	slurp	out	the	nectar	of	flowers,	or	use	specially	adapted
teeth	to	bite	into	fruit,	from	which	they	often	drink	only	the	juice.	The	consequence	of	the
fruit	bat’s	frequent	interaction	with	flowers	is	a	mutually	beneficial	relationship	known	as
chiropterophily,	in	which	the	flowers	rely	on	herbivorous	bats	to	carry	pollen	from	one
flower	to	another.	The	megabat’s	consumption	of	fruit	—	primarily	figs	or	the	fruit	of	the
bead	tree,	in	the	case	of	the	Salim	Ali’s	fruit	bat	—	also	perform	the	function	of	dispersing
seeds.

By	mechanisms	that	are	not	clear,	the	fruit	bat’s	herbivorous	nature	has	deprived	almost
all	members	of	the	Megachiroptera	suborder	of	the	ability	to	use	echolocation.	It	is
possible,	according	to	some	research,	that	the	economy	of	energy	achieved	by
insectivorous	bats,	whose	flight	activities	also	seem	to	physiologically	prepare	the	bat	for
the	vocalizations	that	act	like	submarine	pings	in	echolocation,	is	not	as	easily	realized	by
the	heartier-meal-eating	and	generally	bigger	fruit	bats.	The	megabats’	larger	eyes	and
keener	sense	of	smell	appear	to	compensate.

The	last	25	years	of	the	Salim	Ali	fruit	bat’s	history	have	seen	its	status	as	a	species
threatened	by	extinction	change	from	“rare”	to	“critically	endangered”	to	the	more
optimistic	“endangered.”	Research	has	indicated	that	there	is	a	greater	population	and
range	than	was	previously	recorded,	and	efforts	have	been	made	to	discourage	the	private
owners	of	the	land	on	which	the	bat	maintains	roosts	from	hunting	it	as	a	pest	or	for	its
rumored	medicinal	value.	However,	the	outlook	for	the	survival	of	the	species	is	still	not
bright,	as	humans	continue	to	encroach	on	and	fragment	its	primary	habitat.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Cassell’s	Natural	History.	The	cover	fonts	are	URW	Typewriter
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com


Preface
Who	Should	Read	This	Book?

Who	Should	Not	Read	This	Book?

What	You’ll	Learn

Prerequisites

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

I.	Fundamentals

1.	Introduction
Brief	History

Philosophy

Installation

Summary

2.	Preliminaries
The	ROS	Graph

roscore

catkin,	Workspaces,	and	ROS	Packages
catkin

Workspaces

ROS	Packages

rosrun

Names,	Namespaces,	and	Remapping

roslaunch



The	Tab	Key

tf:	Coordinate	Transforms
Poses,	Positions,	and	Orientations

tf

Summary

3.	Topics
Publishing	to	a	Topic

Checking	That	Everything	Works	as	Expected

Subscribing	to	a	Topic
Checking	That	Everything	Works	as	Expected

Latched	Topics

Defining	Your	Own	Message	Types
Defining	a	New	Message

Using	Your	New	Message

When	Should	You	Make	a	New	Message	Type?

Mixing	Publishers	and	Subscribers

Summary

4.	Services
Defining	a	Service

Implementing	a	Service
Checking	That	Everything	Works	as	Expected

Other	Ways	of	Returning	Values	from	a	Service

Using	a	Service
Checking	That	Everything	Works	as	Expected

Other	Ways	to	Call	Services

Summary

5.	Actions



Defining	an	Action

Implementing	a	Basic	Action	Server
Checking	That	Everything	Works	as	Expected

Using	an	Action
Checking	That	Everything	Works	as	Expected

Implementing	a	More	Sophisticated	Action	Server

Using	the	More	Sophisticated	Action
Checking	That	Everything	Works	as	Expected

Summary

6.	Robots	and	Simulators
Subsystems

Actuation:	Mobile	Platform

Actuation:	Manipulator	Arm

Sensors

Computation

Complete	Robots
PR2

Fetch

Robonaut	2

TurtleBot

Simulators
Stage

Gazebo

Other	Simulators

Summary

7.	Wander-bot
Creating	a	Package



Reading	Sensor	Data

Sensing	and	Actuation:	Wander-bot!

Summary

II.	Moving	Around	Using	ROS

8.	Teleop-bot
Development	Pattern

Keyboard	Driver

Motion	Generator

Parameter	Server

Velocity	Ramps

Let’s	Drive!

rviz

Summary

9.	Building	Maps	of	the	World
Maps	in	ROS

Recording	Data	with	rosbag

Building	Maps

Starting	a	Map	Server	and	Looking	at	a	Map

Summary

10.	Navigating	About	the	World
Localizing	the	Robot	in	a	Map

Getting	a	Good	Initial	Localization

What’s	Going	on	Behind	the	Scenes

Tips	for	Setting	a	Better	Initial	Pose

Using	the	ROS	Navigation	Stack
The	ROS	Navigation	Stack



Navigating	in	rviz

Seeing	What’s	Going	On

Navigating	in	Code

Summary

11.	Chess-bot
Joints,	Links,	and	Kinematic	Chains

Joint	Space

Inverse	Kinematics

The	Key	to	Success

Installing	and	Running	a	Simulated	R2

Moving	R2	from	the	Command	Line

Moving	R2	Around	a	Chessboard

Operating	the	Hand

Modeling	a	Chessboard

Playing	Back	a	Famous	Chess	Game

Summary

III.	Perception	and	Behavior

12.	Follow-bot
Acquiring	Images

Detecting	the	Line

Following	the	Line

Summary

13.	On	Patrol
Simple	Patrolling

State	Machines
State	Machines	in	ROS



Defining	State	Machines	with	smach
A	Slightly	More	Relevant	Example

Defining	State	Machines	Procedurally

Patrolling	with	State	Machines
A	Better	Way	to	Patrol

Summary

14.	Stockroom-bot
Stockroom	Simulation

Driving	to	Bins

Picking	Up	the	Item

Summary

IV.	Bringing	Your	Own	Stuff	into	ROS

15.	Your	Own	Sensors	and	Actuators
Adding	Your	Own	Sensors

A	(Fake)	Sensor

Designing	the	ROS	Wrapper

Design	1:	Periodic	Measurements	over	a	Topic

Design	2:	Streaming	Measurements	over	a	Topic

Design	3:	Streaming	Measurements	Published	at	a	Fixed	Rate

Design	4:	Sensor	Measurements	on	Demand

Adding	Your	Own	Actuators
A	(Fake)	Actuator

Designing	the	ROS	Wrapper

Design	1:	Continuous	Actuation

Design	2:	Infrequent,	Instantaneous	Actuation

Design	3:	Infrequent,	Extended	Actuation

Summary



16.	Your	Own	Mobile	Robot
TortoiseBot

ROS	Message	Interface

Hardware	Driver

Modeling	the	Robot:	URDF

Simulation	in	Gazebo

Summary

17.	Your	Own	Mobile	Robot:	Part	2
Verifying	Transforms

Adding	a	Laser	Sensor

Configuring	the	Navigation	Stack

Using	rviz	to	Localize	and	Command	a	Navigating	Robot

Summary

18.	Your	Own	Robot	Arm
CougarBot

ROS	Message	Interface

Hardware	Driver

Modeling	the	Robot:	URDF

Simulation	in	Gazebo

Verifying	Transforms

Configuring	MoveIt

Using	rviz	to	Send	Goals

Summary

19.	Adding	a	Software	Library
Make	Your	Robot	Talk:	pyttsx

Action	Interface



Parameters

Event	Loops

The	Speech	Server

The	Speech	Client

Checking	That	Everything	Works	as	Expected

Summary

V.	Tips	and	Tricks

20.	Tools
The	Master	and	Friends:	roscore

Parameters:	rosparam

Navigating	the	Filesystem:	roscd

Starting	a	Node:	rosrun

Starting	Many	Nodes:	roslaunch

Testing	a	Many-Node	System:	rostest

Introspection:	rosnode,	rostopic,	rosmsg,	rosservice,	and	rossrv

Summary

21.	Debugging	Robot	Behavior
Log	Messages:	/rosout	and	rqt_console

Generating	Log	Messages:	/rosout

Logger	Levels

Reading	Log	Messages:	rqt_console

/rosout	Versus	/rosout_agg

Nodes,	Topics,	and	Connections:	rqt_graph	and	rosnode
Visualizing	the	Graph:	rqt_graph

Problem:	Mismatched	Topic	Names

Problem:	Mismatched	Topic	Types	and/or	Checksums



Problem:	Incorrect	Network	Settings

Sensor	Fusion:	rviz

Plotting	Data:	rqt_plot

Data	Logging	and	Analysis:	rosbag	and	rqt_bag
Logging	and	Playing	Back	Data:	rosbag

Visualizing	Bags:	rqt_bag

Analyzing	ROS	Bags	with	Other	Tools:	rostopic	echo	-b

Summary

22.	The	ROS	Community:	Online	Resources
Etiquette

The	ROS	Wiki

ROS	Answers

Trackers	(Bugs	and	Feature	Requests)

Mailing	Lists	and	Special	Interest	Groups

Finding	and	Sharing	Code

Summary

23.	Using	C++	in	ROS
When	Should	You	Use	C	(or	Some	Other	Language)?

Building	C++	with	catkin
package.xml

CMakeLists.txt

catkin_make

Translating	from	Python	to	C++	(and	Back	Again)
A	Simple	Node

Topics

Services



Summary

Index


	Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	What You’ll Learn
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. Fundamentals
	1. Introduction
	Brief History
	Philosophy
	Installation
	Summary

	2. Preliminaries
	The ROS Graph
	roscore
	catkin, Workspaces, and ROS Packages
	catkin
	Workspaces
	ROS Packages

	rosrun
	Names, Namespaces, and Remapping
	roslaunch
	The Tab Key
	tf: Coordinate Transforms
	Poses, Positions, and Orientations
	tf

	Summary

	3. Topics
	Publishing to a Topic
	Checking That Everything Works as Expected

	Subscribing to a Topic
	Checking That Everything Works as Expected

	Latched Topics
	Defining Your Own Message Types
	Defining a New Message
	Using Your New Message
	When Should You Make a New Message Type?

	Mixing Publishers and Subscribers
	Summary

	4. Services
	Defining a Service
	Implementing a Service
	Checking That Everything Works as Expected
	Other Ways of Returning Values from a Service

	Using a Service
	Checking That Everything Works as Expected
	Other Ways to Call Services

	Summary

	5. Actions
	Defining an Action
	Implementing a Basic Action Server
	Checking That Everything Works as Expected

	Using an Action
	Checking That Everything Works as Expected

	Implementing a More Sophisticated Action Server
	Using the More Sophisticated Action
	Checking That Everything Works as Expected

	Summary

	6. Robots and Simulators
	Subsystems
	Actuation: Mobile Platform
	Actuation: Manipulator Arm
	Sensors
	Visual cameras
	Depth cameras
	Laser scanners
	Shaft encoders

	Computation

	Complete Robots
	PR2
	Fetch
	Robonaut 2
	TurtleBot

	Simulators
	Stage
	Gazebo
	Other Simulators

	Summary

	7. Wander-bot
	Creating a Package
	Reading Sensor Data
	Sensing and Actuation: Wander-bot!
	Summary

	II. Moving Around Using ROS
	8. Teleop-bot
	Development Pattern
	Keyboard Driver
	Motion Generator
	Parameter Server
	Velocity Ramps
	Let’s Drive!
	rviz
	Summary

	9. Building Maps of the World
	Maps in ROS
	Recording Data with rosbag
	Building Maps
	Starting a Map Server and Looking at a Map
	Summary

	10. Navigating About the World
	Localizing the Robot in a Map
	Getting a Good Initial Localization
	What’s Going on Behind the Scenes
	Tips for Setting a Better Initial Pose

	Using the ROS Navigation Stack
	The ROS Navigation Stack
	Navigating in rviz
	Seeing What’s Going On

	Navigating in Code
	Summary

	11. Chess-bot
	Joints, Links, and Kinematic Chains
	Joint Space
	Inverse Kinematics

	The Key to Success
	Installing and Running a Simulated R2
	Moving R2 from the Command Line
	Moving R2 Around a Chessboard
	Operating the Hand
	Modeling a Chessboard
	Playing Back a Famous Chess Game
	Summary

	III. Perception and Behavior
	12. Follow-bot
	Acquiring Images
	Detecting the Line
	Following the Line
	Summary

	13. On Patrol
	Simple Patrolling
	State Machines
	State Machines in ROS

	Defining State Machines with smach
	A Slightly More Relevant Example
	Defining State Machines Procedurally

	Patrolling with State Machines
	A Better Way to Patrol

	Summary

	14. Stockroom-bot
	Stockroom Simulation
	Driving to Bins
	Picking Up the Item
	Summary

	IV. Bringing Your Own Stuff into ROS
	15. Your Own Sensors and Actuators
	Adding Your Own Sensors
	A (Fake) Sensor
	Designing the ROS Wrapper
	Design 1: Periodic Measurements over a Topic
	Design 2: Streaming Measurements over a Topic
	Design 3: Streaming Measurements Published at a Fixed Rate
	Design 4: Sensor Measurements on Demand

	Adding Your Own Actuators
	A (Fake) Actuator
	Designing the ROS Wrapper
	Design 1: Continuous Actuation
	Design 2: Infrequent, Instantaneous Actuation
	Design 3: Infrequent, Extended Actuation

	Summary

	16. Your Own Mobile Robot
	TortoiseBot
	ROS Message Interface
	Hardware Driver
	Modeling the Robot: URDF
	Simulation in Gazebo
	Summary

	17. Your Own Mobile Robot: Part 2
	Verifying Transforms
	Adding a Laser Sensor
	Configuring the Navigation Stack
	Using rviz to Localize and Command a Navigating Robot
	Summary

	18. Your Own Robot Arm
	CougarBot
	ROS Message Interface
	Hardware Driver
	Modeling the Robot: URDF
	Simulation in Gazebo
	Verifying Transforms
	Configuring MoveIt
	Using rviz to Send Goals
	Summary

	19. Adding a Software Library
	Make Your Robot Talk: pyttsx
	Action Interface
	Parameters
	Event Loops
	The Speech Server
	The Speech Client
	Checking That Everything Works as Expected

	Summary

	V. Tips and Tricks
	20. Tools
	The Master and Friends: roscore
	Parameters: rosparam
	Navigating the Filesystem: roscd
	Starting a Node: rosrun
	Starting Many Nodes: roslaunch
	Testing a Many-Node System: rostest
	Introspection: rosnode, rostopic, rosmsg, rosservice, and rossrv
	Summary

	21. Debugging Robot Behavior
	Log Messages: /rosout and rqt_console
	Generating Log Messages: /rosout
	Logger Levels
	Reading Log Messages: rqt_console
	/rosout Versus /rosout_agg

	Nodes, Topics, and Connections: rqt_graph and rosnode
	Visualizing the Graph: rqt_graph
	Problem: Mismatched Topic Names
	Problem: Mismatched Topic Types and/or Checksums
	Problem: Incorrect Network Settings

	Sensor Fusion: rviz
	Plotting Data: rqt_plot
	Data Logging and Analysis: rosbag and rqt_bag
	Logging and Playing Back Data: rosbag
	Visualizing Bags: rqt_bag
	Analyzing ROS Bags with Other Tools: rostopic echo -b

	Summary

	22. The ROS Community: Online Resources
	Etiquette
	The ROS Wiki
	ROS Answers
	Trackers (Bugs and Feature Requests)
	Mailing Lists and Special Interest Groups
	Finding and Sharing Code
	Summary

	23. Using C++ in ROS
	When Should You Use C (or Some Other Language)?
	Building C++ with catkin
	package.xml
	CMakeLists.txt
	catkin_make

	Translating from Python to C++ (and Back Again)
	A Simple Node
	Topics
	Services

	Summary

	Index

